I\'m looking for an algorithm, or at least theory of operation on how you would find similar text in two or more different strings...
Much like the question posed he
i had a similar problem, i needed to get the percentage of characters in a string that were similar. it needed exact sequences, so for example "hello sir" and "sir hello" when compared needed to give me five characters that are the same, in this case they would be the two "hello"'s. it would then take the length of the longest of the two strings and give me a percentage of how similar they were. this is the code that i came up with
int compare(string a, string b){
return(a.size() > b.size() ? bigger(a,b) : bigger(b,a));
}
int bigger(string a, string b){
int maxcount = 0, currentcount = 0;//used to see which set of concurrent characters were biggest
for(int i = 0; i < a.size(); ++i){
for(int j = 0; j < b.size(); ++j){
if(a[i+j] == b[j]){
++currentcount;
}
else{
if(currentcount > maxcount){
maxcount = currentcount;
}//end if
currentcount = 0;
}//end else
}//end inner for loop
}//end outer for loop
return ((int)(((float)maxcount/((float)a.size()))*100));
}
One way to determine a measure of "overall similarity without respect to order" is to use some kind of compression-based distance. Basically, the way most compression algorithms (e.g. gzip
) work is to scan along a string looking for string segments that have appeared earlier -- any time such a segment is found, it is replaced with an (offset, length) pair identifying the earlier segment to use. You can use measures of how well two strings compress to detect similarities between them.
Suppose you have a function string comp(string s)
that returns a compressed version of s
. You can then use the following expression as a "similarity score" between two strings s
and t
:
len(comp(s)) + len(comp(t)) - len(comp(s . t))
where .
is taken to be concatenation. The idea is that you are measuring how much further you can compress t
by looking at s
first. If s == t
, then len(comp(s . t))
will be barely any larger than len(comp(s))
and you'll get a high score, while if they are completely different, len(comp(s . t))
will be very near len(comp(s) + comp(t))
and you'll get a score near zero. Intermediate levels of similarity produce intermediate scores.
Actually the following formula is even better as it is symmetric (i.e. the score doesn't change depending on which string is s
and which is t
):
2 * (len(comp(s)) + len(comp(t))) - len(comp(s . t)) - len(comp(t . s))
This technique has its roots in information theory.
Advantages: good compression algorithms are already available, so you don't need to do much coding, and they run in linear time (or nearly so) so they're fast. By contrast, solutions involving all permutations of words grow super-exponentially in the number of words (although admittedly that may not be a problem in your case as you say you know there will only be a handful of words).
The difficulty would be to match the strings semantically.
You could generate some kind of value based on the lexical properties of the string. e.g. They bot have blue, and sky, and they're in the same sentence, etc etc... But it won't handle cases where "Sky's jean is blue", or some other odd ball English construction that uses same words, but you'd need to parse the English grammar...
To do anything beyond lexical similarity, you'd need to look at natural language processing, and there isn't going to be one single algorith that would solve your problem.
I can't mark two answers here, so I'm going to answer and mark my own. The Levenshtein distance appears to be the correct method in most cases for this. But, it is worth mentioning j_random_hackers answer as well. I have used an implementation of LZMA to test his theory, and it proves to be a sound solution. In my original question I was looking for a method for short strings (2 to 200 chars), where the Levenshtein Distance algorithm will work. But, not mentioned in the question was the need to compare two (larger) strings (in this case, text files of moderate size) and to perform a quick check to see how similar the two are. I believe that this compression technique will work well but I have yet to study it to find at which point one becomes better than the other, in terms of the size of the sample data and the speed/cost of the operation in question. I think a lot of the answers given to this question are valuable, and worth mentioning, for anyone looking to solve a similar string ordeal like I'm doing here. Thank you all for your great answers, and I hope they can be used to serve others well too.
Levenshtein distance will not completely work, because you want to allow rearrangements. I think your best bet is going to be to find best rearrangement with levenstein distance as cost for each word.
To find the cost of rearrangement, kinda like the pancake sorting problem. So, you can permute every combination of words (filtering out exact matches), with every combination of other string, trying to minimize a combination of permute distance and Levenshtein distance on each word pair.
edit: Now that I have a second I can post a quick example (all 'best' guesses are on inspection and not actually running the algorithms):
original strings | best rearrangement w/ lev distance per word
Into the clear blue sky | Into the c_lear blue sky
The color is sky blue | is__ the colo_r blue sky
R_dist = dist( 3 1 2 5 4 ) --> 3 1 2 *4 5* --> *2 1 3* 4 5 --> *1 2* 3 4 5 = 3
L_dist = (2D+S) + (I+D+S) (Total Subsitutions: 2, deletions: 3, insertion: 1)
(notice all the flips include all elements in the range, and I use ranges where Xi - Xj = +/- 1)
Other example
original strings | best rearrangement w/ lev distance per word
Into the clear blue sky | Into the clear blue sky
In the blue clear sky | In__ the clear blue sky
R_dist = dist( 1 2 4 3 5 ) --> 1 2 *3 4* 5 = 1
L_dist = (2D) (Total Subsitutions: 0, deletions: 2, insertion: 0)
And to show all possible combinations of the three...
The color is sky blue | The colo_r is sky blue
In the blue clear sky | the c_lear in sky blue
R_dist = dist( 2 4 1 3 5 ) --> *2 3 1 4* 5 --> *1 3 2* 4 5 --> 1 *2 3* 4 5 = 3
L_dist = (D+I+S) + (S) (Total Subsitutions: 2, deletions: 1, insertion: 1)
Anyway you make the cost function the second choice will be lowest cost, which is what you expected!
There's another way. Pattern recognition using convolution. Image A is run thru a Fourier transform. Image B also. Now superimposing F(A) over F(B) then transforming this back gives you a black image with a few white spots. Those spots indicate where A matches B strongly. Total sum of spots would indicate an overall similarity. Not sure how you'd run an FFT on strings but I'm pretty sure it would work.