I am trying to write a Zhang-Suen thinning algorithm in C# following this guideline, without processing the margins.
Here is my C# implementation of Zhang-Suen thinning algorithm
public static bool[][] ZhangSuenThinning(bool[][] s)
{
bool[][] temp = s;
bool even = true;
for (int a = 1; a < s.Length-1; a++)
{
for (int b = 1; b < s[0].Length-1; b++)
{
if (SuenThinningAlg(a, b, temp, even))
{
temp[a][b] = false;
}
even = !even;
}
}
return temp;
}
static bool SuenThinningAlg(int x, int y, bool[][] s, bool even)
{
bool p2 = s[x][y - 1];
bool p3 = s[x + 1][y - 1];
bool p4 = s[x + 1][y];
bool p5 = s[x + 1][y + 1];
bool p6 = s[x][y + 1];
bool p7 = s[x - 1][y + 1];
bool p8 = s[x - 1][y];
bool p9 = s[x - 1][y - 1];
int bp1 = NumberOfNonZeroNeighbors(x, y, s);
if (bp1 >= 2 && bp1 <= 6)//2nd condition
{
if (NumberOfZeroToOneTransitionFromP9(x, y, s) == 1)
{
if (even)
{
if (!((p2 && p4) && p8))
{
if (!((p2 && p6) && p8))
{
return true;
}
}
}
else
{
if (!((p2 && p4) && p6))
{
if (!((p4 && p6) && p8))
{
return true;
}
}
}
}
}
return false;
}
static int NumberOfZeroToOneTransitionFromP9(int x, int y, bool[][]s)
{
bool p2 = s[x][y - 1];
bool p3 = s[x + 1][y - 1];
bool p4 = s[x + 1][y];
bool p5 = s[x + 1][y + 1];
bool p6 = s[x][y + 1];
bool p7 = s[x - 1][y + 1];
bool p8 = s[x - 1][y];
bool p9 = s[x - 1][y - 1];
int A = Convert.ToInt32((p2 == false && p3 == true)) + Convert.ToInt32((p3 == false && p4 == true)) +
Convert.ToInt32((p4 == false && p5 == true)) + Convert.ToInt32((p5 == false && p6 == true)) +
Convert.ToInt32((p6 == false && p7 == true)) + Convert.ToInt32((p7 == false && p8 == true)) +
Convert.ToInt32((p8 == false && p9 == true)) + Convert.ToInt32((p9 == false && p2 == true));
return A;
}
static int NumberOfNonZeroNeighbors(int x, int y, bool[][]s)
{
int count = 0;
if (s[x-1][y])
count++;
if (s[x-1][y+1])
count++;
if (s[x-1][y-1])
count++;
if (s[x][y+1])
count++;
if (s[x][y-1])
count++;
if (s[x+1][y])
count++;
if (s[x+1][y+1])
count++;
if (s[x+1][y-1])
count++;
return count;
}