I am trying to write a Zhang-Suen thinning algorithm in C# following this guideline, without processing the margins.
bwang22's answer is very slow. Try this instead:
public readonly struct ConnectivityData
{
public readonly int[] N;
public readonly int NumNeighbors;
public readonly int NumChanges;
public ConnectivityData(in int[] n, in int numNeighbors, in int numChanges)
{
N = n;
NumNeighbors = numNeighbors;
NumChanges = numChanges;
}
}
public static void ZhangSuen(in HashSet<Pixel> pixels)
{
while (true)
{
// Pass #1:
List<Pixel> mark1 = new List<Pixel>();
foreach (Pixel p in pixels)
{
ConnectivityData conn = ComputeConnectivity(p, pixels);
if (conn.NumNeighbors > 1 &&
conn.NumNeighbors < 7 &&
conn.NumChanges == 1 &&
conn.N[0] * conn.N[2] * conn.N[4] == 0 &&
conn.N[2] * conn.N[4] * conn.N[6] == 0)
{
mark1.Add(p);
}
}
//delete all marked:
foreach (Pixel p in mark1)
{
pixels.Remove(p);
}
// PASS #2:
List<Pixel> mark2 = new List<Pixel>();
foreach (Pixel p in pixels)
{
ConnectivityData conn = ComputeConnectivity(p, pixels);
if (conn.NumNeighbors > 1 &&
conn.NumNeighbors < 7 &&
conn.NumChanges == 1 &&
conn.N[0] * conn.N[2] * conn.N[6] == 0 &&
conn.N[0] * conn.N[4] * conn.N[6] == 0)
{
mark2.Add(p);
}
}
//delete all marked:
foreach (Pixel p in mark2)
{
pixels.Remove(p);
}
if (mark1.Count == 0 && mark2.Count == 0)
{
break;
}
}
}
private static ConnectivityData ComputeConnectivity(
in Pixel p,
in HashSet<Pixel> pixels)
{
// calculate #neighbors and number of changes:
int[] n = new int[8];
if (pixels.Contains(new Pixel(p.X, p.Y - 1)))
{
n[0] = 1;
}
if (pixels.Contains(new Pixel(p.X + 1, p.Y - 1)))
{
n[1] = 1;
}
if (pixels.Contains(new Pixel(p.X + 1, p.Y)))
{
n[2] = 1;
}
if (pixels.Contains(new Pixel(p.X + 1, p.Y + 1)))
{
n[3] = 1;
}
if (pixels.Contains(new Pixel(p.X, p.Y + 1)))
{
n[4] = 1;
}
if (pixels.Contains(new Pixel(p.X - 1, p.Y + 1)))
{
n[5] = 1;
}
if (pixels.Contains(new Pixel(p.X - 1, p.Y)))
{
n[6] = 1;
}
if (pixels.Contains(new Pixel(p.X - 1, p.Y - 1)))
{
n[7] = 1;
}
return new ConnectivityData(
n,
n[0] + n[1] + n[2] + n[3] + n[4] + n[5] + n[6] + n[7],
ComputeNumberOfChanges(n));
}
private static int ComputeNumberOfChanges(in int[] n)
{
int numberOfChanges = 0;
// Iterate over each location and see if it is has changed from 0 to 1:
int current = n[0];
for (int i = 1; i < 8; i++)
{
if (n[i] == 1 && current == 0)
{
numberOfChanges++;
}
current = n[i];
}
// Also consider the change over the discontinuity between n[7] and n[0]:
if (n[0] == 1 && n[7] == 0)
{
numberOfChanges++;
}
return numberOfChanges;
}
To use:
From your Bitmap etc, create a hash set of type Pixel, (which contains all the black pixels you want to thin) eg:
public class Pixel
{
public int X;
public int Y;
public Pixel(in int x, in int y)
{
X = x;
Y = y;
}
public override bool Equals(object pixel)
{
Pixel b = pixel as Pixel;
return X == b.X && Y == b.Y;
}
public override int GetHashCode()
{
//return (a.X << 2) ^ a.Y; // this is also commonly used as a pixel hash code
return X * 100000 + Y; // a bit hacky [will fail if bitmap width is > 100000]
}
}
...then call ZhangSuen(pixels). This will delete the appropriate pixels from the set.
Note that this method does not work perfectly on all images. It makes parts of some images disappear. Specifically, I am having problems with downward-right pointing diagonal lines of thickness around 11 pixels wide.
I am currently working on a way to improve this, but it performs better than the similar Staniford algorithm on most files I have tested it with (CAD files).
bwang22's answer works. Sort of. But with two issues: It doesn't do the iterations until no more changes happen. And it does a shallow copy of the Array.. The two issues cooperate so to speak, cancelling each other out, resulting in an thinning, but not the best looking one.
Here is the corrected code, which gives a nicer looking result:
First two methods to convert from Image to bool[][] and back; the functions are not optimzed for speed; if you need that go for lockbits/unsafe..:
public static bool[][] Image2Bool(Image img)
{
Bitmap bmp = new Bitmap(img);
bool[][] s = new bool[bmp.Height][];
for (int y = 0; y < bmp.Height; y++ )
{
s[y] = new bool[bmp.Width];
for (int x = 0; x < bmp.Width; x++)
s[y][x] = bmp.GetPixel(x, y).GetBrightness() < 0.3;
}
return s;
}
public static Image Bool2Image(bool[][] s)
{
Bitmap bmp = new Bitmap(s[0].Length, s.Length);
using (Graphics g = Graphics.FromImage(bmp)) g.Clear(Color.White);
for (int y = 0; y < bmp.Height; y++)
for (int x = 0; x < bmp.Width; x++)
if (s[y][x]) bmp.SetPixel(x, y, Color.Black);
return (Bitmap)bmp;
}
Now the corrected thinning code, much of it more or less unchanged from bwang22's answer:
public static bool[][] ZhangSuenThinning(bool[][] s)
{
bool[][] temp = ArrayClone(s); // make a deep copy to start..
int count = 0;
do // the missing iteration
{
count = step(1, temp, s);
temp = ArrayClone(s); // ..and on each..
count += step(2, temp, s);
temp = ArrayClone(s); // ..call!
}
while (count > 0);
return s;
}
static int step(int stepNo, bool[][] temp, bool[][] s)
{
int count = 0;
for (int a = 1; a < temp.Length - 1; a++)
{
for (int b = 1; b < temp[0].Length - 1; b++)
{
if (SuenThinningAlg(a, b, temp, stepNo == 2))
{
// still changes happening?
if (s[a][b]) count++;
s[a][b] = false;
}
}
}
return count;
}
static bool SuenThinningAlg(int x, int y, bool[][] s, bool even)
{
bool p2 = s[x][y - 1];
bool p3 = s[x + 1][y - 1];
bool p4 = s[x + 1][y];
bool p5 = s[x + 1][y + 1];
bool p6 = s[x][y + 1];
bool p7 = s[x - 1][y + 1];
bool p8 = s[x - 1][y];
bool p9 = s[x - 1][y - 1];
int bp1 = NumberOfNonZeroNeighbors(x, y, s);
if (bp1 >= 2 && bp1 <= 6) //2nd condition
{
if (NumberOfZeroToOneTransitionFromP9(x, y, s) == 1)
{
if (even)
{
if (!((p2 && p4) && p8))
{
if (!((p2 && p6) && p8))
{
return true;
}
}
}
else
{
if (!((p2 && p4) && p6))
{
if (!((p4 && p6) && p8))
{
return true;
}
}
}
}
}
return false;
}
static int NumberOfZeroToOneTransitionFromP9(int x, int y, bool[][] s)
{
bool p2 = s[x][y - 1];
bool p3 = s[x + 1][y - 1];
bool p4 = s[x + 1][y];
bool p5 = s[x + 1][y + 1];
bool p6 = s[x][y + 1];
bool p7 = s[x - 1][y + 1];
bool p8 = s[x - 1][y];
bool p9 = s[x - 1][y - 1];
int A = Convert.ToInt32((!p2 && p3 )) + Convert.ToInt32((!p3 && p4 )) +
Convert.ToInt32((!p4 && p5 )) + Convert.ToInt32((!p5 && p6 )) +
Convert.ToInt32((!p6 && p7 )) + Convert.ToInt32((!p7 && p8 )) +
Convert.ToInt32((!p8 && p9 )) + Convert.ToInt32((!p9 && p2 ));
return A;
}
static int NumberOfNonZeroNeighbors(int x, int y, bool[][] s)
{
int count = 0;
if (s[x - 1][y]) count++;
if (s[x - 1][y + 1]) count++;
if (s[x - 1][y - 1]) count++;
if (s[x][y + 1]) count++;
if (s[x][y - 1]) count++;
if (s[x + 1][y]) count++;
if (s[x + 1][y + 1]) count++;
if (s[x + 1][y - 1]) count++;
return count;
}
I have kept the original even flag, but call it by comparing a step number. And I have saved a few characters by using the bools directly..
Finally a function to get a deep copy of the nested 2d array:
public static T[][] ArrayClone<T>(T [][] A)
{ return A.Select(a => a.ToArray()).ToArray(); }
This is how to call it, using two PictureBoxes:
pictureBox1.Image = Image.FromFile("D:\\RCdemo.png");
bool[][] t = Image2Bool(pictureBox1.Image);
t = ZhangSuenThinning(t);
pictureBox2.Image = Bool2Image(t);
I append a test image.
Here is my C# implementation of Zhang-Suen thinning algorithm
public static bool[][] ZhangSuenThinning(bool[][] s)
{
bool[][] temp = s;
bool even = true;
for (int a = 1; a < s.Length-1; a++)
{
for (int b = 1; b < s[0].Length-1; b++)
{
if (SuenThinningAlg(a, b, temp, even))
{
temp[a][b] = false;
}
even = !even;
}
}
return temp;
}
static bool SuenThinningAlg(int x, int y, bool[][] s, bool even)
{
bool p2 = s[x][y - 1];
bool p3 = s[x + 1][y - 1];
bool p4 = s[x + 1][y];
bool p5 = s[x + 1][y + 1];
bool p6 = s[x][y + 1];
bool p7 = s[x - 1][y + 1];
bool p8 = s[x - 1][y];
bool p9 = s[x - 1][y - 1];
int bp1 = NumberOfNonZeroNeighbors(x, y, s);
if (bp1 >= 2 && bp1 <= 6)//2nd condition
{
if (NumberOfZeroToOneTransitionFromP9(x, y, s) == 1)
{
if (even)
{
if (!((p2 && p4) && p8))
{
if (!((p2 && p6) && p8))
{
return true;
}
}
}
else
{
if (!((p2 && p4) && p6))
{
if (!((p4 && p6) && p8))
{
return true;
}
}
}
}
}
return false;
}
static int NumberOfZeroToOneTransitionFromP9(int x, int y, bool[][]s)
{
bool p2 = s[x][y - 1];
bool p3 = s[x + 1][y - 1];
bool p4 = s[x + 1][y];
bool p5 = s[x + 1][y + 1];
bool p6 = s[x][y + 1];
bool p7 = s[x - 1][y + 1];
bool p8 = s[x - 1][y];
bool p9 = s[x - 1][y - 1];
int A = Convert.ToInt32((p2 == false && p3 == true)) + Convert.ToInt32((p3 == false && p4 == true)) +
Convert.ToInt32((p4 == false && p5 == true)) + Convert.ToInt32((p5 == false && p6 == true)) +
Convert.ToInt32((p6 == false && p7 == true)) + Convert.ToInt32((p7 == false && p8 == true)) +
Convert.ToInt32((p8 == false && p9 == true)) + Convert.ToInt32((p9 == false && p2 == true));
return A;
}
static int NumberOfNonZeroNeighbors(int x, int y, bool[][]s)
{
int count = 0;
if (s[x-1][y])
count++;
if (s[x-1][y+1])
count++;
if (s[x-1][y-1])
count++;
if (s[x][y+1])
count++;
if (s[x][y-1])
count++;
if (s[x+1][y])
count++;
if (s[x+1][y+1])
count++;
if (s[x+1][y-1])
count++;
return count;
}