I\'m working on a project using Python(3.7) and OpenCV in which I have an Image(captured using the camera) of a document with a QR code placed on it.
This QR code ha
Here's a simple approach using thresholding, morphological operations, and contour filtering.
Obtain binary image. Load image, grayscale, Gaussian blur, Otsu's threshold
Connect individual QR contours. Create a rectangular structuring kernel with cv2.getStructuringElement then perform morphological operations with cv2.MORPH_CLOSE.
Filter for QR code. Find contours and filter using contour approximation, contour area, and aspect ratio.
Detected QR code
Extracted QR code
From here you can compare the QR code with your reference information
Code
import cv2
import numpy as np
# Load imgae, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9,9), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Morph close
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours and filter for QR code
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
x,y,w,h = cv2.boundingRect(approx)
area = cv2.contourArea(c)
ar = w / float(h)
if len(approx) == 4 and area > 1000 and (ar > .85 and ar < 1.3):
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 3)
ROI = original[y:y+h, x:x+w]
cv2.imwrite('ROI.png', ROI)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('image', image)
cv2.imshow('ROI', ROI)
cv2.waitKey()