I\'m working on a project using Python(3.7) and OpenCV in which I have an Image(captured using the camera) of a document with a QR code placed on it.
This QR code ha
Here's a simple approach using thresholding, morphological operations, and contour filtering.
Obtain binary image. Load image, grayscale, Gaussian blur, Otsu's threshold
Connect individual QR contours. Create a rectangular structuring kernel with cv2.getStructuringElement then perform morphological operations with cv2.MORPH_CLOSE
.
Filter for QR code. Find contours and filter using contour approximation, contour area, and aspect ratio.
Detected QR code
Extracted QR code
From here you can compare the QR code with your reference information
Code
import cv2
import numpy as np
# Load imgae, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9,9), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Morph close
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours and filter for QR code
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
x,y,w,h = cv2.boundingRect(approx)
area = cv2.contourArea(c)
ar = w / float(h)
if len(approx) == 4 and area > 1000 and (ar > .85 and ar < 1.3):
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 3)
ROI = original[y:y+h, x:x+w]
cv2.imwrite('ROI.png', ROI)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('image', image)
cv2.imshow('ROI', ROI)
cv2.waitKey()
So, you mainly have 3 problems here.
I improved your code a little bit and removed the border pixels:
import cv2
import matplotlib.pyplot as plt
import math
import numpy as np
image = cv2.imread('/Users/samettaspinar/Public/im.jpg')
qrCodeDetector = cv2.QRCodeDetector()
decodedText, points, _ = qrCodeDetector.detectAndDecode(image)
qr_data = decodedText.split(',')
qr_size = int(qr_data[0])
top = int(qr_data[1])
right = int(qr_data[2])
bottom = int(qr_data[3])
left = int(qr_data[4])
print(f'Size: {qr_size}' + str(qr_data[5]))
print(f'Top: {top}')
print(f'Right: {right}')
print(f'Bottom: {bottom}')
print(f'Left: {left}')
plt.imshow(image)
plt.show()
dists = [] #This is for estimating distances between corner points.
#I will average them to find ratio of pixels in image vs qr_size
#in the optimal case, all dists should be equal
if points is not None:
pts = len(points)
for i in range(pts):
p1 = points[i][0]
p2 = points[(i+1) % pts][0]
dists.append(math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2))
print('line', tuple(p1), tuple(p2))
image = cv2.line(image, tuple(p1), tuple(p2), (255,0,0), 5)
else:
print("QR code not detected")
print('distances: ', dists)
# Remove the black border pixels. I had a simple idea for this
# Get the average intensity of the gray image
# If count the row average of the first half that are less than intensity/2.
# It approx gives number of black borders on the left. etc.
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inten = np.mean(gray)
x = np.mean(gray, axis=0) # finds the vertical average
y = np.mean(gray, axis=1) # finds horizontal average
bl_left = np.sum([x[:int(col/2)] < inten/2])
bl_right = np.sum([x[int(col/2)+1:] < inten/2])
bl_top = np.sum([y[:int(row/2)] < inten/2])
bl_bottom = np.sum([y[int(row/2)+1:] < inten/2])
print('black margins: ', bl_left, bl_right, bl_top, bl_bottom)
# Estimate how many pixel you will crop out
ratio = np.mean(dists)/ int(qr_size)
print('actual px / qr_size in px: ', ratio)
row,col,dim = image.shape
top, left, right, bottom = int(top*ratio), int(left*ratio), int(right*ratio), int(bottom*ratio)
top += bl_top
left += bl_left
right += bl_right
bottom += bl_bottom
print('num pixels to be cropped: ', top, left, right, bottom)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image2 = image[top:row-bottom, left:col-right, :]
plt.imshow(image2)
plt.show()
Notice that I ignored the rotation issue. If there is rotation, you can find the angle by calculating the tangents/arctan where I calculated the distances.
I got the width
and height
data using points and compare it with the qr_data
size. Then cropped the QR according to needed.
import cv2
import math
image = cv2.imread('/ur/image/directory/qr.jpg')
qrCodeDetector = cv2.QRCodeDetector()
decodedText, points, _ = qrCodeDetector.detectAndDecode(image)
qr_data = decodedText.split(',')
qr_size = qr_data[0]
top = qr_data[1]
right = qr_data[2]
bottom = qr_data[3]
left = qr_data[4]
if points is not None:
pts = len(points)
print(pts)
for i in range(pts):
nextPointIndex = (i+1) % pts
cv2.line(image, tuple(points[i][0]), tuple(points[nextPointIndex][0]), (255,0,0), 5)
print(points[i][0])
width = int(math.sqrt((points[0][0][0]-points[1][0][0])**2 + (points[0][0][1]-points[1][0][1])**2))
height = int(math.sqrt((points[1][0][0]-points[2][0][0])**2 + (points[1][0][1]-points[2][0][1])**2))
# Compare the size
if(width==qr_data[0] and height==qr_data[0]):
print("Sizes are equal")
else:
print("Width and height " + str(width) + "x" + str(height) + " not equal to "
+ str(qr_data[0]) + "x" + str(qr_data[0]))
# Add the extension values to points and crop
y = int(points[0][0][1]) - int(qr_data[1])
x = int(points[0][0][0]) - int(qr_data[4])
roi = image[y:y+height + int(qr_data[3]), x:x+width + int(qr_data[2])]
print(decodedText)
cv2.imshow("Image", image)
cv2.imshow("Crop", roi)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print("QR code not detected")
Result: