I have a list of numbers as follows:
lst = [1.9378076554115014, 1.2084586588892861, 1.2133096565896173,
1.2427632053442292, 1.1809971732733273, 0.919
Colormaps are powerful, but (a) you can often do something simpler and (b) because they're powerful, they sometimes do more than I expect. Extending mfitzp's example:
import matplotlib
import matplotlib.cm as cm
lst = [1.9378076554115014, 1.2084586588892861, 1.2133096565896173, 1.2427632053442292,
1.1809971732733273, 0.91960143581348919, 1.1106310149587162, 1.1106310149587162,
1.1527004351293346, 0.87318084435885079, 1.1666132876686799, 1.1666132876686799]
minima = min(lst)
maxima = max(lst)
norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.Greys)
for v in lst:
print(mapper.to_rgba(v))
# really simple grayscale answer
algebra_list = [(x-minima)/(maxima-minima) for x in lst]
# let's compare the mapper and the algebra
mapper_list = [mapper.to_rgba(x)[0] for x in lst]
matplotlib.pyplot.plot(lst, mapper_list, color='red', label='ScalarMappable')
matplotlib.pyplot.plot(lst, algebra_list, color='blue', label='Algebra')
# I did not expect them to go in opposite directions. Also, interesting how
# Greys uses wider spacing for darker colors.
# You could use Greys_r (reversed)
# Also, you can do the colormapping in a call to scatter (for instance)
# it will do the normalizing itself
matplotlib.pyplot.scatter(lst, lst, c=lst, cmap=cm.Greys, label='Default norm, Greys')
matplotlib.pyplot.scatter(lst, [x-0.25 for x in lst], marker='s', c=lst,
cmap=cm.Greys_r, label='Reversed Greys, default norm')
matplotlib.pyplot.legend(bbox_to_anchor=(0.5, 1.05))