I have a list of numbers as follows:
lst = [1.9378076554115014, 1.2084586588892861, 1.2133096565896173,
1.2427632053442292, 1.1809971732733273, 0.919
The matplotlib.colors
module is what you are looking for. This provides a number of classes to map from values to colourmap values.
import matplotlib
import matplotlib.cm as cm
lst = [1.9378076554115014, 1.2084586588892861, 1.2133096565896173, 1.2427632053442292,
1.1809971732733273, 0.91960143581348919, 1.1106310149587162, 1.1106310149587162,
1.1527004351293346, 0.87318084435885079, 1.1666132876686799, 1.1666132876686799]
minima = min(lst)
maxima = max(lst)
norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.Greys_r)
for v in lst:
print(mapper.to_rgba(v))
The general approach is find the minima
and maxima
in your data. Use these to create a Normalize
instance (other normalisation classes are available, e.g. log scale). Next you create a ScalarMappable
using the Normalize
instance and your chosen colormap. You can then use mapper.to_rgba(v)
to map from an input value v
, via your normalised scale, to a target color.
for v in sorted(lst):
print("%.4f: %.4f" % (v, mapper.to_rgba(v)[0]) )
Produces the output:
0.8732: 0.0000
0.9196: 0.0501
1.1106: 0.2842
1.1106: 0.2842
1.1527: 0.3348
1.1666: 0.3469
1.1666: 0.3469
1.1810: 0.3632
1.2085: 0.3875
1.2133: 0.3916
1.2428: 0.4200
1.9378: 1.0000
The matplotlib.colors
module documentation has more information if needed.
Colormaps are powerful, but (a) you can often do something simpler and (b) because they're powerful, they sometimes do more than I expect. Extending mfitzp's example:
import matplotlib
import matplotlib.cm as cm
lst = [1.9378076554115014, 1.2084586588892861, 1.2133096565896173, 1.2427632053442292,
1.1809971732733273, 0.91960143581348919, 1.1106310149587162, 1.1106310149587162,
1.1527004351293346, 0.87318084435885079, 1.1666132876686799, 1.1666132876686799]
minima = min(lst)
maxima = max(lst)
norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.Greys)
for v in lst:
print(mapper.to_rgba(v))
# really simple grayscale answer
algebra_list = [(x-minima)/(maxima-minima) for x in lst]
# let's compare the mapper and the algebra
mapper_list = [mapper.to_rgba(x)[0] for x in lst]
matplotlib.pyplot.plot(lst, mapper_list, color='red', label='ScalarMappable')
matplotlib.pyplot.plot(lst, algebra_list, color='blue', label='Algebra')
# I did not expect them to go in opposite directions. Also, interesting how
# Greys uses wider spacing for darker colors.
# You could use Greys_r (reversed)
# Also, you can do the colormapping in a call to scatter (for instance)
# it will do the normalizing itself
matplotlib.pyplot.scatter(lst, lst, c=lst, cmap=cm.Greys, label='Default norm, Greys')
matplotlib.pyplot.scatter(lst, [x-0.25 for x in lst], marker='s', c=lst,
cmap=cm.Greys_r, label='Reversed Greys, default norm')
matplotlib.pyplot.legend(bbox_to_anchor=(0.5, 1.05))