So, here\'s a funny little programming challenge. I was writing a quick method to determine all the market holidays for a particular year, and then I started reading about E
The below code determines Easter through powershell:
function Get-DateOfEaster {
param(
[Parameter(ValueFromPipeline)]
$theYear=(Get-Date).Year
)
if($theYear -lt 1583) {
return $null
} else {
# Step 1: Divide the theYear by 19 and store the
# remainder in variable A. Example: If the theYear
# is 2000, then A is initialized to 5.
$a = $theYear % 19
# Step 2: Divide the theYear by 100. Store the integer
# result in B and the remainder in C.
$c = $theYear % 100
$b = ($theYear -$c) / 100
# Step 3: Divide B (calculated above). Store the
# integer result in D and the remainder in E.
$e = $b % 4
$d = ($b - $e) / 4
# Step 4: Divide (b+8)/25 and store the integer
# portion of the result in F.
$f = [math]::floor(($b + 8) / 25)
# Step 5: Divide (b-f+1)/3 and store the integer
# portion of the result in G.
$g = [math]::floor(($b - $f + 1) / 3)
# Step 6: Divide (19a+b-d-g+15)/30 and store the
# remainder of the result in H.
$h = (19 * $a + $b - $d - $g + 15) % 30
# Step 7: Divide C by 4. Store the integer result
# in I and the remainder in K.
$k = $c % 4
$i = ($c - $k) / 4
# Step 8: Divide (32+2e+2i-h-k) by 7. Store the
# remainder of the result in L.
$l = (32 + 2 * $e + 2 * $i - $h - $k) % 7
# Step 9: Divide (a + 11h + 22l) by 451 and
# store the integer portion of the result in M.
$m = [math]::floor(($a + 11 * $h + 22 * $l) / 451)
# Step 10: Divide (h + l - 7m + 114) by 31. Store
# the integer portion of the result in N and the
# remainder in P.
$p = ($h + $l - 7 * $m + 114) % 31
$n = (($h + $l - 7 * $m + 114) - $p) / 31
# At this point p+1 is the day on which Easter falls.
# n is 3 for March and 4 for April.
$DateTime = New-Object DateTime $theyear, $n, ($p+1), 0, 0, 0, ([DateTimeKind]::Utc)
return $DateTime
}
}
$eastersunday=Get-DateOfEaster 2015
Write-Host $eastersunday