I have the following data:
Name <- c(\"Sam\", \"Sarah\", \"Jim\", \"Fred\", \"James\", \"Sally\", \"Andrew\", \"John\", \"Mairin\", \"Kate\", \"Sasha\", \
I would actually recommend keeping your data in a "long" format. Here's how I would approach this:
library(dplyr)
Keeping all values when there are ties:
data %>%
group_by(Group) %>%
arrange(Age) %>% ## optional
filter(Age %in% range(Age))
# Source: local data frame [8 x 3]
# Groups: Group
#
# Name Age Group
# 1 Sam 22 A
# 2 Sarah 31 B
# 3 Jim 31 B
# 4 James 58 B
# 5 Andrew 17 C
# 6 Sally 82 C
# 7 Mairin 12 D
# 8 Ray 67 D
Keeping only one value when there are ties:
data %>%
group_by(Group) %>%
arrange(Age) %>%
slice(if (length(Age) == 1) 1 else c(1, n())) ## maybe overkill?
# Source: local data frame [7 x 3]
# Groups: Group
#
# Name Age Group
# 1 Sam 22 A
# 2 Sarah 31 B
# 3 James 58 B
# 4 Andrew 17 C
# 5 Sally 82 C
# 6 Mairin 12 D
# 7 Ray 67 D
If you really want a "wide" dataset, the basic concept would be to gather and spread the data, using "tidyr":
library(dplyr)
library(tidyr)
data %>%
group_by(Group) %>%
arrange(Age) %>%
slice(c(1, n())) %>%
mutate(minmax = c("min", "max")) %>%
gather(var, val, Name:Age) %>%
unite(key, minmax, var) %>%
spread(key, val)
# Source: local data frame [4 x 5]
#
# Group max_Age max_Name min_Age min_Name
# 1 A 22 Sam 22 Sam
# 2 B 58 James 31 Sarah
# 3 C 82 Sally 17 Andrew
# 4 D 67 Ray 12 Mairin
Though what wide form you would want with ties is unclear.