I have the following data:
Name <- c(\"Sam\", \"Sarah\", \"Jim\", \"Fred\", \"James\", \"Sally\", \"Andrew\", \"John\", \"Mairin\", \"Kate\", \"Sasha\", \
Here are some data.table
approaches, the first one borrowed from @akrun:
setDT(data)
# show one, wide format
data[,c(min=.SD[which.min(Age)],max=.SD[which.max(Age)]),by=Group]
# Group min.Name min.Age max.Name max.Age
# 1: A Sam 22 Sam 22
# 2: B Sarah 31 James 58
# 3: C Andrew 17 Sally 82
# 4: D Mairin 12 Ray 67
# show all, long format
data[,{
mina=min(Age)
maxa=max(Age)
rbind(
data.table(minmax="min",Age=mina,Name=Name[which(Age==mina)]),
data.table(minmax="max",Age=maxa,Name=Name[which(Age==maxa)])
)},by=Group]
# Group minmax Age Name
# 1: A min 22 Sam
# 2: A max 22 Sam
# 3: B min 31 Sarah
# 4: B min 31 Jim
# 5: B max 58 James
# 6: C min 17 Andrew
# 7: C max 82 Sally
# 8: D min 12 Mairin
# 9: D max 67 Ray
I think the long format is the best, since it allows you to filter with minmax
, but the code is tortured and inefficient.
Here are some arguably less good ways:
# show all, wide format (with a list column)
data[,{
mina=min(Age)
maxa=max(Age)
list(
minAge=mina,
maxAge=maxa,
minNames=list(Name[Age==mina]),
maxNames=list(Name[Age==maxa]))
},by=Group]
# Group minAge maxAge minNames maxNames
# 1: A 22 22 Sam Sam
# 2: B 31 58 Sarah,Jim James
# 3: C 17 82 Andrew Sally
# 4: D 12 67 Mairin Ray
# show all, wide format (with a string column)
# (just look at @shadow's answer)
I would actually recommend keeping your data in a "long" format. Here's how I would approach this:
library(dplyr)
Keeping all values when there are ties:
data %>%
group_by(Group) %>%
arrange(Age) %>% ## optional
filter(Age %in% range(Age))
# Source: local data frame [8 x 3]
# Groups: Group
#
# Name Age Group
# 1 Sam 22 A
# 2 Sarah 31 B
# 3 Jim 31 B
# 4 James 58 B
# 5 Andrew 17 C
# 6 Sally 82 C
# 7 Mairin 12 D
# 8 Ray 67 D
Keeping only one value when there are ties:
data %>%
group_by(Group) %>%
arrange(Age) %>%
slice(if (length(Age) == 1) 1 else c(1, n())) ## maybe overkill?
# Source: local data frame [7 x 3]
# Groups: Group
#
# Name Age Group
# 1 Sam 22 A
# 2 Sarah 31 B
# 3 James 58 B
# 4 Andrew 17 C
# 5 Sally 82 C
# 6 Mairin 12 D
# 7 Ray 67 D
If you really want a "wide" dataset, the basic concept would be to gather
and spread
the data, using "tidyr":
library(dplyr)
library(tidyr)
data %>%
group_by(Group) %>%
arrange(Age) %>%
slice(c(1, n())) %>%
mutate(minmax = c("min", "max")) %>%
gather(var, val, Name:Age) %>%
unite(key, minmax, var) %>%
spread(key, val)
# Source: local data frame [4 x 5]
#
# Group max_Age max_Name min_Age min_Name
# 1 A 22 Sam 22 Sam
# 2 B 58 James 31 Sarah
# 3 C 82 Sally 17 Andrew
# 4 D 67 Ray 12 Mairin
Though what wide form you would want with ties is unclear.
You can use which.min
and which.max
to get the first value.
data %>% group_by(Group) %>%
summarize(minAge = min(Age), minAgeName = Name[which.min(Age)],
maxAge = max(Age), maxAgeName = Name[which.max(Age)])
To get all values, use e.g. paste with an appropriate collapse
argument.
data %>% group_by(Group) %>%
summarize(minAge = min(Age), minAgeName = paste(Name[which(Age == min(Age))], collapse = ", "),
maxAge = max(Age), maxAgeName = paste(Name[which(Age == max(Age))], collapse = ", "))