Is there a function that could be used for calculation of the divergence of the vectorial field? (in matlab) I would expect it exists in numpy/scipy but I can not find it us
I don't think the answer by @Daniel is correct, especially when the input is in order [Fx, Fy, Fz, ...].
See the MATLAB code:
a = [1 2 3;1 2 3; 1 2 3];
b = [[7 8 9] ;[1 5 8] ;[2 4 7]];
divergence(a,b)
which gives the result:
ans =
-5.0000 -2.0000 0
-1.5000 -1.0000 0
2.0000 0 0
and Daniel's solution:
def divergence(f):
"""
Daniel's solution
Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ...
:param f: List of ndarrays, where every item of the list is one dimension of the vector field
:return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
if __name__ == '__main__':
a = np.array([[1, 2, 3]] * 3)
b = np.array([[7, 8, 9], [1, 5, 8], [2, 4, 7]])
div = divergence([a, b])
print(div)
pass
which gives:
[[1. 1. 1. ]
[4. 3.5 3. ]
[2. 2.5 3. ]]
The mistake of Daniel's solution is, in Numpy, the x axis is the last axis instead of the first axis. When using np.gradient(x, axis=0), Numpy actually gives the gradient of y direction (when x is a 2d array).
There is my solution based on Daniel's answer.
def divergence(f):
"""
Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ...
:param f: List of ndarrays, where every item of the list is one dimension of the vector field
:return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[num_dims - i - 1], axis=i) for i in range(num_dims)])
which gives the same result as MATLAB divergence in my test case.