Is there a function that could be used for calculation of the divergence of the vectorial field? (in matlab) I would expect it exists in numpy/scipy but I can not find it us
What Daniel had modified is the right answer, let me explain self defined func divergence further in more detail :
Function np.gradient() defined as : np.gradient( f) = df/dx, df/dy, df/dz +...
but we need define func divergence as : divergence ( f) = dfx/dx + dfy/dy + dfz/dz +... = np.gradient( fx) + np.gradient(fy) + np.gradient(fz) + ...
Let's test, compare with example of divergence in matlab
import numpy as np
import matplotlib.pyplot as plt
NY = 50
ymin = -2.
ymax = 2.
dy = (ymax -ymin )/(NY-1.)
NX = NY
xmin = -2.
xmax = 2.
dx = (xmax -xmin)/(NX-1.)
def divergence(f):
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
y = np.array([ ymin + float(i)*dy for i in range(NY)])
x = np.array([ xmin + float(i)*dx for i in range(NX)])
x, y = np.meshgrid( x, y, indexing = 'ij', sparse = False)
Fx = np.cos(x + 2*y)
Fy = np.sin(x - 2*y)
F = [Fx, Fy]
g = divergence(F)
plt.pcolormesh(x, y, g)
plt.colorbar()
plt.savefig( 'Div' + str(NY) +'.png', format = 'png')
plt.show()
Based on @paul_chen answer, and with some additions for Matplotlib 3.3.0 (a shading param needs to be passed, and default colormap I guess has changed)
import numpy as np
import matplotlib.pyplot as plt
NY = 20; ymin = -2.; ymax = 2.
dy = (ymax -ymin )/(NY-1.)
NX = NY
xmin = -2.; xmax = 2.
dx = (xmax -xmin)/(NX-1.)
def divergence(f):
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
y = np.array([ ymin + float(i)*dy for i in range(NY)])
x = np.array([ xmin + float(i)*dx for i in range(NX)])
x, y = np.meshgrid( x, y, indexing = 'ij', sparse = False)
Fx = np.cos(x + 2*y)
Fy = np.sin(x - 2*y)
F = [Fx, Fy]
g = divergence(F)
plt.pcolormesh(x, y, g, shading='nearest', cmap=plt.cm.get_cmap('coolwarm'))
plt.colorbar()
plt.quiver(x,y,Fx,Fy)
plt.savefig( 'Div.png', format = 'png')
Just a hint for everybody reading that:
the functions above do not compute the divergence of a vector field. they sum the derivatives of a scalar field A:
result = dA/dx + dA/dy
in contrast to a vector field (with three dimensional example):
result = sum dAi/dxi = dAx/dx + dAy/dy + dAz/dz
Vote down for all! It is mathematically simply wrong.
Cheers!
Based on Juh_'s answer, but modified for the correct divergence of a vector field formula
def divergence(f):
"""
Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ...
:param f: List of ndarrays, where every item of the list is one dimension of the vector field
:return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
Matlab's documentation uses this exact formula (scroll down to Divergence of a Vector Field)
The divergence as a built-in function is included in matlab, but not numpy. This is the sort of thing that it may perhaps be worthwhile to contribute to pylab, an effort to create a viable open-source alternative to matlab.
http://wiki.scipy.org/PyLab
Edit: Now called http://www.scipy.org/stackspec.html
I don't think the answer by @Daniel is correct, especially when the input is in order [Fx, Fy, Fz, ...]
.
See the MATLAB code:
a = [1 2 3;1 2 3; 1 2 3];
b = [[7 8 9] ;[1 5 8] ;[2 4 7]];
divergence(a,b)
which gives the result:
ans =
-5.0000 -2.0000 0
-1.5000 -1.0000 0
2.0000 0 0
and Daniel's solution:
def divergence(f):
"""
Daniel's solution
Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ...
:param f: List of ndarrays, where every item of the list is one dimension of the vector field
:return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
if __name__ == '__main__':
a = np.array([[1, 2, 3]] * 3)
b = np.array([[7, 8, 9], [1, 5, 8], [2, 4, 7]])
div = divergence([a, b])
print(div)
pass
which gives:
[[1. 1. 1. ]
[4. 3.5 3. ]
[2. 2.5 3. ]]
The mistake of Daniel's solution is, in Numpy, the x axis is the last axis instead of the first axis. When using np.gradient(x, axis=0)
, Numpy actually gives the gradient of y direction (when x is a 2d array).
There is my solution based on Daniel's answer.
def divergence(f):
"""
Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ...
:param f: List of ndarrays, where every item of the list is one dimension of the vector field
:return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[num_dims - i - 1], axis=i) for i in range(num_dims)])
which gives the same result as MATLAB divergence
in my test case.