How do I find out eigenvectors corresponding to a particular eigenvalue of a matrix?

匿名 (未验证) 提交于 2019-12-03 03:03:02

问题:

How do I find out eigenvectors corresponding to a particular eigenvalue?

I have a stochastic matrix(P), one of the eigenvalues of which is 1. I need to find the eigenvector corresponding to the eigenvalue 1.

The scipy function scipy.linalg.eig returns the array of eigenvalues and eigenvectors.

D, V = scipy.linalg.eig(P) 

Here D(array of values) and V(array of vectors) are both vectors.

One way is to do a search in D and extract the corresponding eigenvector in V. Is there an easier way?

回答1:

If you are looking for one eigenvector corresponding to one eigenvalue, it could be much more efficient to use the scipy.sparse.linalg implementation of the eig function. It allows to look for a fixed number of eigenvectors and to shift the search around a specific value. You could do for instance :

values, vectors = scipy.sparse.linalg.eigs(P, k=1, sigma=1) 


回答2:

import numpy as np import numpy.linalg as linalg   P = np.array([[2, 0, 0], [0, 1, 0], [0, 0, 3]])  D, V = linalg.eig(P) print(D) # [ 2.  1.  3.] 

The eigenvectors are columns of V:

V = V.T  for val, vec in zip(D, V):     assert np.allclose(np.dot(P, vec), val*vec) 

So the eigenvector corresponding to eigenvalue 1.0 is

def near(a, b, rtol = 1e-5, atol = 1e-8):     return np.abs(a-b)<(atol+rtol*np.abs(b))  print(V[near(D, 1.0)]) # [[ 0.  1.  0.]] 

Since there can be more than one eigenvector with the same eigenvalue, V[near(D, 1.0)] returns a 2-dimensional array -- each row of the array is an eigenvector with an eigenvalue of 1.0.



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!