可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I've chunked a sentence using:
grammar = ''' NP: {*(|)*} NVN: {} ''' chunker = nltk.chunk.RegexpParser(grammar) tree = chunker.parse(tagged) print tree
The result looks like:
(S (NVN (NP The_Pigs/NNS) are/VBP (NP a/DT Bristol-based/JJ punk/NN rock/NN band/NN)) that/WDT formed/VBN in/IN 1977/CD ./.)
But now I'm stuck trying to figure out how to navigate that. I want to be able to find the NVN subtree, and access the left-side noun phrase ("The_Pigs"), the verb ("are") and the right-side noun phrase ("a Bristol-based punk rock band"). How do I do that?
回答1:
Try:
ROOT = 'ROOT' tree = ... def getNodes(parent): for node in parent: if type(node) is nltk.Tree: if node.label() == ROOT: print "======== Sentence =========" print "Sentence:", " ".join(node.leaves()) else: print "Label:", node.label() print "Leaves:", node.leaves() getNodes(node) else: print "Word:", node getNodes(tree)
回答2:
You could, of course, write your own depth first search... but there is an easier (better) way. If you want every subtree rooted at NVM, use Tree's subtree method with the filter parameter defined.
>>> print t (S (NVN (NP The_Pigs/NNS) are/VBP (NP a/DT Bristol-based/JJ punk/NN rock/NN band/NN)) that/WDT formed/VBN in/IN 1977/CD ./.) >>> for i in t.subtrees(filter=lambda x: x.node == 'NVN'): ... print i ... (NVN (NP The_Pigs/NNS) are/VBP (NP a/DT Bristol-based/JJ punk/NN rock/NN band/NN))
回答3:
Try this:
for a in tree: if type(a) is nltk.Tree: if a.node == 'NVN': # This climbs into your NVN tree for b in a: if type(b) is nltk.Tree and b.node == 'NP': print b.leaves() # This outputs your "NP" else: print b # This outputs your "VB.*"
It outputs this:
[('The_Pigs', 'NNS')]
('are', 'VBP')
[('a', 'DT'), ('Bristol-based', 'JJ'), ('punk', 'NN'), ('rock', 'NN'), ('band', 'NN')]
回答4:
here's a code sample for generating all the subtrees with a label 'NP'
def filt(x): return x.label()=='NP' for subtree in t.subtrees(filter = filt): # Generate all subtrees print subtree
for siblings, you might wanna take a look at the method ParentedTree.left_siblings()
for more details, here are some useful links.
http://www.nltk.org/howto/tree.html #some basic usage and example http://nbviewer.ipython.org/github/gmonce/nltk_parsing/blob/master/1.%20NLTK%20Syntax%20Trees.ipynb #a notebook playwith these methods
http://www.nltk.org/_modules/nltk/tree.html #all api with source