I have successfully trained, exported and uploaded my 'retrained_graph.pb' to ML Engine. My export script is as follows:
import tensorflow as tf from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants from tensorflow.python.saved_model import builder as saved_model_builder input_graph = 'retrained_graph.pb' saved_model_dir = 'my_model' with tf.Graph().as_default() as graph: # Read in the export graph with tf.gfile.FastGFile(input_graph, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') # Define SavedModel Signature (inputs and outputs) in_image = graph.get_tensor_by_name('DecodeJpeg/contents:0') inputs = {'image_bytes': tf.saved_model.utils.build_tensor_info(in_image)} out_classes = graph.get_tensor_by_name('final_result:0') outputs = {'prediction_bytes': tf.saved_model.utils.build_tensor_info(out_classes)} signature = tf.saved_model.signature_def_utils.build_signature_def( inputs=inputs, outputs=outputs, method_name='tensorflow/serving/predict' ) with tf.Session(graph=graph) as sess: # Save out the SavedModel. b = saved_model_builder.SavedModelBuilder(saved_model_dir) b.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={'serving_default': signature}) b.save()
I build my prediction Json using the following:
# Copy the image to local disk. gsutil cp gs://cloud-ml-data/img/flower_photos/tulips/4520577328_a94c11e806_n.jpg flower.jpg # Create request message in json format. python -c 'import base64, sys, json; img = base64.b64encode(open(sys.argv[1], "rb").read()); print json.dumps({"image_bytes": {"b64": img}}) ' flower.jpg &> request.json # Call prediction service API to get classifications gcloud ml-engine predict --model ${MODEL_NAME} --json-instances request.json
However this fails with the response:
{ "error": "Prediction failed: Error during model execution: AbortionError(code=StatusCode.INVALID_ARGUMENT, details=\"contents must be scalar, got shape [1]\n\t [[Node: Deco deJpeg = DecodeJpeg[_output_shapes=[[?,?,3]], acceptable_fraction=1, channels=3, dct_method=\"\", fancy_upscaling=true, ratio=1, try_recover_truncated=false, _device=\"/job:l ocalhost/replica:0/task:0/device:CPU:0\"](_arg_DecodeJpeg/contents_0_0)]]\")" }
Any help appreciated, I'm so close I can taste it :D