Prediction failed: contents must be scalar

匿名 (未验证) 提交于 2019-12-03 00:56:02

问题:

I have successfully trained, exported and uploaded my 'retrained_graph.pb' to ML Engine. My export script is as follows:

import tensorflow as tf from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants from tensorflow.python.saved_model import builder as saved_model_builder  input_graph = 'retrained_graph.pb' saved_model_dir = 'my_model'  with tf.Graph().as_default() as graph:   # Read in the export graph   with tf.gfile.FastGFile(input_graph, 'rb') as f:       graph_def = tf.GraphDef()       graph_def.ParseFromString(f.read())       tf.import_graph_def(graph_def, name='')    # Define SavedModel Signature (inputs and outputs)   in_image = graph.get_tensor_by_name('DecodeJpeg/contents:0')   inputs = {'image_bytes': tf.saved_model.utils.build_tensor_info(in_image)}    out_classes = graph.get_tensor_by_name('final_result:0')   outputs = {'prediction_bytes': tf.saved_model.utils.build_tensor_info(out_classes)}    signature = tf.saved_model.signature_def_utils.build_signature_def(       inputs=inputs,       outputs=outputs,       method_name='tensorflow/serving/predict'   )    with tf.Session(graph=graph) as sess:     # Save out the SavedModel.     b = saved_model_builder.SavedModelBuilder(saved_model_dir)     b.add_meta_graph_and_variables(sess,                                [tf.saved_model.tag_constants.SERVING],                                signature_def_map={'serving_default': signature})     b.save()  

I build my prediction Json using the following:

# Copy the image to local disk. gsutil cp gs://cloud-ml-data/img/flower_photos/tulips/4520577328_a94c11e806_n.jpg flower.jpg  # Create request message in json format. python -c 'import base64, sys, json; img = base64.b64encode(open(sys.argv[1], "rb").read()); print json.dumps({"image_bytes": {"b64": img}}) ' flower.jpg &> request.json  # Call prediction service API to get classifications gcloud ml-engine predict --model ${MODEL_NAME} --json-instances request.json 

However this fails with the response:

{   "error": "Prediction failed: Error during model execution: AbortionError(code=StatusCode.INVALID_ARGUMENT, details=\"contents must be scalar, got shape [1]\n\t [[Node: Deco deJpeg = DecodeJpeg[_output_shapes=[[?,?,3]], acceptable_fraction=1, channels=3, dct_method=\"\", fancy_upscaling=true, ratio=1, try_recover_truncated=false, _device=\"/job:l ocalhost/replica:0/task:0/device:CPU:0\"](_arg_DecodeJpeg/contents_0_0)]]\")" } 

Any help appreciated, I'm so close I can taste it :D

回答1:

The server will decode and batch all the inputs. So the input to your graph is essentially [ base64_decode("xxx") ] where you actually want to feed base64_decode("xxx") since the op takes a string type tensor. Server side assumes the shape of input as [None, ] i.e. the first dimension can be anything for batching. In your case, [None]. You might want to create a tensor of that shape and then feed that into the op.



回答2:

Why do you have this line in_image = graph.get_tensor_by_name('DecodeJpeg/contents:0')?

inputs = {'image_bytes': tf.saved_model.utils.build_tensor_info(in_image)} The shape here is scalar. Can you make sure you create input with shape [None]

https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/flowers/trainer/model.py#L364



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!