DPDK flow_classify 源码阅读

匿名 (未验证) 提交于 2019-12-03 00:41:02

todo

/* SPDX-License-Identifier: BSD-3-Clause  * Copyright(c) 2017 Intel Corporation  */  #include <stdint.h> #include <inttypes.h> #include <getopt.h>  #include <rte_eal.h> #include <rte_ethdev.h> #include <rte_cycles.h> #include <rte_lcore.h> #include <rte_mbuf.h> #include <rte_flow.h> #include <rte_flow_classify.h> #include <rte_table_acl.h>  #define RX_RING_SIZE 1024 #define TX_RING_SIZE 1024  #define NUM_MBUFS 8191 #define MBUF_CACHE_SIZE 250 #define BURST_SIZE 32  #define MAX_NUM_CLASSIFY 30 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 #define FLOW_CLASSIFY_MAX_PRIORITY 8 #define FLOW_CLASSIFIER_NAME_SIZE 64  #define COMMENT_LEAD_CHAR   ('#') #define OPTION_RULE_IPV4    "rule_ipv4" #define RTE_LOGTYPE_FLOW_CLASSIFY   RTE_LOGTYPE_USER3 #define flow_classify_log(format, ...)         RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)  #define uint32_t_to_char(ip, a, b, c, d) do {        *a = (unsigned char)(ip >> 24 & 0xff);        *b = (unsigned char)(ip >> 16 & 0xff);        *c = (unsigned char)(ip >> 8 & 0xff);        *d = (unsigned char)(ip & 0xff);    } while (0)  enum {     CB_FLD_SRC_ADDR,     CB_FLD_DST_ADDR,     CB_FLD_SRC_PORT,     CB_FLD_SRC_PORT_DLM,     CB_FLD_SRC_PORT_MASK,     CB_FLD_DST_PORT,     CB_FLD_DST_PORT_DLM,     CB_FLD_DST_PORT_MASK,     CB_FLD_PROTO,     CB_FLD_PRIORITY,     CB_FLD_NUM, };  static struct{     const char *rule_ipv4_name; } parm_config; const char cb_port_delim[] = ":";  static const struct rte_eth_conf port_conf_default = {     .rxmode = {         .max_rx_pkt_len = ETHER_MAX_LEN,         .ignore_offload_bitfield = 1,     }, };  struct flow_classifier {     struct rte_flow_classifier *cls; };  struct flow_classifier_acl {     struct flow_classifier cls; } __rte_cache_aligned;  /* ACL field definitions for IPv4 5 tuple rule */  enum {     PROTO_FIELD_IPV4, // 0     SRC_FIELD_IPV4,   // 1     DST_FIELD_IPV4,   // 2     SRCP_FIELD_IPV4,  // 3     DSTP_FIELD_IPV4,  // 4      NUM_FIELDS_IPV4   // 5 };  enum {     PROTO_INPUT_IPV4,     SRC_INPUT_IPV4,     DST_INPUT_IPV4,     SRCP_DESTP_INPUT_IPV4 };   /* 数据结构 rte_acl_field_def:ACL访问控制表的字段的定义 ACL规则中的每个字段都有一个关联定义。有五个,分别是:类型,大小,字段的索引(指示哪一个字段),输入索引(0-N)和(距离字段开始处的)偏移量。  */ static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {     /* first input field - always one byte long. */     {         .type = RTE_ACL_FIELD_TYPE_BITMASK,         .size = sizeof(uint8_t),         .field_index = PROTO_FIELD_IPV4,         .input_index = PROTO_INPUT_IPV4,         .offset = sizeof(struct ether_hdr) +             offsetof(struct ipv4_hdr, next_proto_id),     },     /* next input field (IPv4 source address) - 4 consecutive bytes. */     {         /* rte_flow uses a bit mask for IPv4 addresses */         .type = RTE_ACL_FIELD_TYPE_BITMASK,         .size = sizeof(uint32_t),         .field_index = SRC_FIELD_IPV4,         .input_index = SRC_INPUT_IPV4,         .offset = sizeof(struct ether_hdr) +             offsetof(struct ipv4_hdr, src_addr),     },     /* next input field (IPv4 destination address) - 4 consecutive bytes. */     {         /* rte_flow uses a bit mask for IPv4 addresses */         .type = RTE_ACL_FIELD_TYPE_BITMASK,         .size = sizeof(uint32_t),         .field_index = DST_FIELD_IPV4,         .input_index = DST_INPUT_IPV4,         .offset = sizeof(struct ether_hdr) +             offsetof(struct ipv4_hdr, dst_addr),     },     /*      * Next 2 fields (src & dst ports) form 4 consecutive bytes.      * They share the same input index.      */     {         /* rte_flow uses a bit mask for protocol ports */         .type = RTE_ACL_FIELD_TYPE_BITMASK,         .size = sizeof(uint16_t),         .field_index = SRCP_FIELD_IPV4,         .input_index = SRCP_DESTP_INPUT_IPV4,         .offset = sizeof(struct ether_hdr) +             sizeof(struct ipv4_hdr) +             offsetof(struct tcp_hdr, src_port),     },     {         /* rte_flow uses a bit mask for protocol ports */         .type = RTE_ACL_FIELD_TYPE_BITMASK,         .size = sizeof(uint16_t),         .field_index = DSTP_FIELD_IPV4,         .input_index = SRCP_DESTP_INPUT_IPV4,         .offset = sizeof(struct ether_hdr) +             sizeof(struct ipv4_hdr) +             offsetof(struct tcp_hdr, dst_port),     }, };  /* flow classify data */ static int num_classify_rules; // rules数组的下标 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; // rules 数组 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; static struct rte_flow_classify_stats classify_stats = {         .stats = (void **)&ntuple_stats };  /* parameters for rte_flow_classify_validate and  * rte_flow_classify_table_entry_add functions  */  static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,     0, 0, 0 }; static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,     0, 0, 0 };  /* sample actions:  * "actions count / end"  */ struct rte_flow_query_count count = {     .reset = 1,     .hits_set = 1,     .bytes_set = 1,     .hits = 0,     .bytes = 0, }; static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,     &count}; static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; static struct rte_flow_action actions[2];  /* sample attributes */ static struct rte_flow_attr attr;  /* flow_classify.c: * Based on DPDK skeleton forwarding example. */  /*  * Initializes a given port using global settings and with the RX buffers  * coming from the mbuf_pool passed as a parameter.  */ static inline int port_init(uint8_t port, struct rte_mempool *mbuf_pool) {     struct rte_eth_conf port_conf = port_conf_default;     struct ether_addr addr;     const uint16_t rx_rings = 1, tx_rings = 1;     int retval;     uint16_t q;     struct rte_eth_dev_info dev_info;     struct rte_eth_txconf txconf;      if (!rte_eth_dev_is_valid_port(port))         return -1;      rte_eth_dev_info_get(port, &dev_info);     if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)         port_conf.txmode.offloads |=             DEV_TX_OFFLOAD_MBUF_FAST_FREE;      /* Configure the Ethernet device. */     retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);     if (retval != 0)         return retval;      /* Allocate and set up 1 RX queue per Ethernet port. */     for (q = 0; q < rx_rings; q++) {         retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,                 rte_eth_dev_socket_id(port), NULL, mbuf_pool);         if (retval < 0)             return retval;     }      txconf = dev_info.default_txconf;     txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE;     txconf.offloads = port_conf.txmode.offloads;     /* Allocate and set up 1 TX queue per Ethernet port. */     for (q = 0; q < tx_rings; q++) {         retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,                 rte_eth_dev_socket_id(port), &txconf);         if (retval < 0)             return retval;     }      /* Start the Ethernet port. */     retval = rte_eth_dev_start(port);     if (retval < 0)         return retval;      /* Display the port MAC address. */     rte_eth_macaddr_get(port, &addr);     printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8                " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",             port,             addr.addr_bytes[0], addr.addr_bytes[1],             addr.addr_bytes[2], addr.addr_bytes[3],             addr.addr_bytes[4], addr.addr_bytes[5]);      /* Enable RX in promiscuous mode for the Ethernet device. */     rte_eth_promiscuous_enable(port);      return 0; }  /*  * The lcore main. This is the main thread that does the work, reading from  * an input port classifying the packets and writing to an output port.  */ static __attribute__((noreturn)) void lcore_main(struct flow_classifier *cls_app) {     uint16_t port;     int ret;     int i = 0;      ret = rte_flow_classify_table_entry_delete(cls_app->cls,             rules[7]);     if (ret)         printf("table_entry_delete failed [7] %d\n\n", ret);     else         printf("table_entry_delete succeeded [7]\n\n");      /*      * Check that the port is on the same NUMA node as the polling thread      * for best performance.      */     RTE_ETH_FOREACH_DEV(port)         if (rte_eth_dev_socket_id(port) > 0 &&             rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {             printf("\n\n");             printf("WARNING: port %u is on remote NUMA node\n",                    port);             printf("to polling thread.\n");             printf("Performance will not be optimal.\n");         }     printf("\nCore %u forwarding packets. ", rte_lcore_id());     printf("[Ctrl+C to quit]\n");      /* Run until the application is quit or killed. */     for (;;) {         /*          * Receive packets on a port, **classify them** and forward them          * on the paired port.          * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.          */         RTE_ETH_FOREACH_DEV(port) {             /* Get burst of RX packets, from first port of pair. */             struct rte_mbuf *bufs[BURST_SIZE];             const uint16_t nb_rx = rte_eth_rx_burst(port, 0,                     bufs, BURST_SIZE); // 收包              if (unlikely(nb_rx == 0))                 continue;              for (i = 0; i < MAX_NUM_CLASSIFY; i++) {                 if (rules[i]) { // 在classifier中查询特定的规则                 // 收包之后,将感兴趣的流放到                     ret = rte_flow_classifier_query(                         cls_app->cls, // 流分类器句柄                         // 要处理的数据包的 mbuf                         // 数据包数量                         // 规则                         bufs, nb_rx, rules[i],                          &classify_stats);                     if (ret) // 返回 0 代表分类成功                         printf(                             "rule [%d] query failed ret [%d]\n\n",                             i, ret);                     else {                         printf(                         "rule[%d] count=%"PRIu64"\n",                         i, ntuple_stats.counter1);                          printf("proto = %d\n",                         ntuple_stats.ipv4_5tuple.proto);                     }                 }             }              /* Send burst of TX packets, to second port of pair. */             const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,                     bufs, nb_rx);              /* Free any unsent packets. */             if (unlikely(nb_tx < nb_rx)) {                 uint16_t buf;                  for (buf = nb_tx; buf < nb_rx; buf++)                     rte_pktmbuf_free(bufs[buf]);             }         }     } }  /*  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.  * Expected format:  * <src_ipv4_addr>'/'<masklen> <space>  * <dst_ipv4_addr>'/'<masklen> <space>  * <src_port> <space> ":" <src_port_mask> <space>  * <dst_port> <space> ":" <dst_port_mask> <space>  * <proto>'/'<proto_mask> <space>  * <priority>  */  static int get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,         char dlm) {     unsigned long val;     char *end;      errno = 0;     val = strtoul(*in, &end, base);     if (errno != 0 || end[0] != dlm || val > lim)         return -EINVAL;     *fd = (uint32_t)val;     *in = end + 1;     return 0; }  static int parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) {     uint32_t a, b, c, d, m;      if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))         return -EINVAL;     if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))         return -EINVAL;     if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))         return -EINVAL;     if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))         return -EINVAL;     if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))         return -EINVAL;      addr[0] = IPv4(a, b, c, d);     mask_len[0] = m;     return 0; }  static int parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) {     int i, ret;     char *s, *sp, *in[CB_FLD_NUM];     static const char *dlm = " \t\n";     int dim = CB_FLD_NUM;     uint32_t temp;      s = str;     for (i = 0; i != dim; i++, s = NULL) {         in[i] = strtok_r(s, dlm, &sp);         if (in[i] == NULL)             return -EINVAL;     }      ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],             &ntuple_filter->src_ip,             &ntuple_filter->src_ip_mask);     if (ret != 0) {         flow_classify_log("failed to read source address/mask: %s\n",             in[CB_FLD_SRC_ADDR]);         return ret;     }      ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],             &ntuple_filter->dst_ip,             &ntuple_filter->dst_ip_mask);     if (ret != 0) {         flow_classify_log("failed to read source address/mask: %s\n",             in[CB_FLD_DST_ADDR]);         return ret;     }      if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))         return -EINVAL;     ntuple_filter->src_port = (uint16_t)temp;      if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,             sizeof(cb_port_delim)) != 0)         return -EINVAL;      if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))         return -EINVAL;     ntuple_filter->src_port_mask = (uint16_t)temp;      if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))         return -EINVAL;     ntuple_filter->dst_port = (uint16_t)temp;      if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,             sizeof(cb_port_delim)) != 0)         return -EINVAL;      if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))         return -EINVAL;     ntuple_filter->dst_port_mask = (uint16_t)temp;      if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))         return -EINVAL;     ntuple_filter->proto = (uint8_t)temp;      if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))         return -EINVAL;     ntuple_filter->proto_mask = (uint8_t)temp;      if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))         return -EINVAL;     ntuple_filter->priority = (uint16_t)temp;     if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)         ret = -EINVAL;      return ret; }  /* Bypass comment and empty lines */ static inline int is_bypass_line(char *buff) {     int i = 0;      /* comment line */     if (buff[0] == COMMENT_LEAD_CHAR)         return 1;     /* empty line */     while (buff[i] != '\0') {         if (!isspace(buff[i]))             return 0;         i++;     }     return 1; }  static uint32_t convert_depth_to_bitmask(uint32_t depth_val) {     uint32_t bitmask = 0;     int i, j;      for (i = depth_val, j = 0; i > 0; i--, j++)         bitmask |= (1 << (31 - j));     return bitmask; }  static int add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,         struct flow_classifier *cls_app) // 一层封装 {     int ret = -1;     int key_found;     struct rte_flow_error error;     struct rte_flow_item_ipv4 ipv4_spec;     struct rte_flow_item_ipv4 ipv4_mask;     struct rte_flow_item ipv4_udp_item;     struct rte_flow_item ipv4_tcp_item;     struct rte_flow_item ipv4_sctp_item;     struct rte_flow_item_udp udp_spec;     struct rte_flow_item_udp udp_mask;     struct rte_flow_item udp_item;     struct rte_flow_item_tcp tcp_spec;     struct rte_flow_item_tcp tcp_mask;     struct rte_flow_item tcp_item;     struct rte_flow_item_sctp sctp_spec;     struct rte_flow_item_sctp sctp_mask;     struct rte_flow_item sctp_item;     struct rte_flow_item pattern_ipv4_5tuple[4];     struct rte_flow_classify_rule *rule;     uint8_t ipv4_proto;      if (num_classify_rules >= MAX_NUM_CLASSIFY) {         printf(             "\nINFO:  classify rule capacity %d reached\n",             num_classify_rules);         return ret;     }      /* set up parameters for validate and add */     memset(&ipv4_spec, 0, sizeof(ipv4_spec));     ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;     ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;     ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;     ipv4_proto = ipv4_spec.hdr.next_proto_id;      memset(&ipv4_mask, 0, sizeof(ipv4_mask));     ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;     ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;     ipv4_mask.hdr.src_addr =         convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);     ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;     ipv4_mask.hdr.dst_addr =         convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);      switch (ipv4_proto) {     case IPPROTO_UDP:         ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;         ipv4_udp_item.spec = &ipv4_spec;         ipv4_udp_item.mask = &ipv4_mask;         ipv4_udp_item.last = NULL;          udp_spec.hdr.src_port = ntuple_filter->src_port;         udp_spec.hdr.dst_port = ntuple_filter->dst_port;         udp_spec.hdr.dgram_len = 0;         udp_spec.hdr.dgram_cksum = 0;          udp_mask.hdr.src_port = ntuple_filter->src_port_mask;         udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;         udp_mask.hdr.dgram_len = 0;         udp_mask.hdr.dgram_cksum = 0;          udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;         udp_item.spec = &udp_spec;         udp_item.mask = &udp_mask;         udp_item.last = NULL;          attr.priority = ntuple_filter->priority;         pattern_ipv4_5tuple[1] = ipv4_udp_item;         pattern_ipv4_5tuple[2] = udp_item;         break;     case IPPROTO_TCP:         ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;         ipv4_tcp_item.spec = &ipv4_spec;         ipv4_tcp_item.mask = &ipv4_mask;         ipv4_tcp_item.last = NULL;          memset(&tcp_spec, 0, sizeof(tcp_spec));         tcp_spec.hdr.src_port = ntuple_filter->src_port;         tcp_spec.hdr.dst_port = ntuple_filter->dst_port;          memset(&tcp_mask, 0, sizeof(tcp_mask));         tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;         tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;          tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;         tcp_item.spec = &tcp_spec;         tcp_item.mask = &tcp_mask;         tcp_item.last = NULL;          attr.priority = ntuple_filter->priority;         pattern_ipv4_5tuple[1] = ipv4_tcp_item;         pattern_ipv4_5tuple[2] = tcp_item;         break;     case IPPROTO_SCTP:         ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;         ipv4_sctp_item.spec = &ipv4_spec;         ipv4_sctp_item.mask = &ipv4_mask;         ipv4_sctp_item.last = NULL;          sctp_spec.hdr.src_port = ntuple_filter->src_port;         sctp_spec.hdr.dst_port = ntuple_filter->dst_port;         sctp_spec.hdr.cksum = 0;         sctp_spec.hdr.tag = 0;          sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;         sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;         sctp_mask.hdr.cksum = 0;         sctp_mask.hdr.tag = 0;          sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;         sctp_item.spec = &sctp_spec;         sctp_item.mask = &sctp_mask;         sctp_item.last = NULL;          attr.priority = ntuple_filter->priority;         pattern_ipv4_5tuple[1] = ipv4_sctp_item;         pattern_ipv4_5tuple[2] = sctp_item;         break;     default:         return ret;     }      attr.ingress = 1;     pattern_ipv4_5tuple[0] = eth_item;     pattern_ipv4_5tuple[3] = end_item;     actions[0] = count_action;     actions[1] = end_action;      /* Validate and add rule */     // 验证这条规则     ret = rte_flow_classify_validate(cls_app->cls, &attr,             pattern_ipv4_5tuple, actions, &error);     if (ret) { // 成功时返回 0          printf("table entry validate failed ipv4_proto = %u\n",             ipv4_proto);         return ret;     }      // 调用 rte_flow_classify_table_entry_add() 将规则添加到 rte_flow_classifier 对象中的table。     /* 五个参数         1. classifier的句柄         2. 流规则属性         3. 模式规范         4. 关联的操作         5. 如果规则已经存在则返回1,否则返回0。         6. 仅在出错的情况下初始化这个结构。     */     rule = rte_flow_classify_table_entry_add(             cls_app->cls, &attr, pattern_ipv4_5tuple,             actions, &key_found, &error);     if (rule == NULL) { // 成功时的有效句柄,否则为NULL         printf("table entry add failed ipv4_proto = %u\n",             ipv4_proto);         ret = -1;         return ret;     }      rules[num_classify_rules] = rule;     num_classify_rules++;     return 0; }  static int add_rules(const char *rule_path, struct flow_classifier *cls_app) // 封装一层 {     FILE *fh;     char buff[LINE_MAX];     unsigned int i = 0;     unsigned int total_num = 0;     struct rte_eth_ntuple_filter ntuple_filter; // 用于定义n-tuple过滤器条目     int ret;      fh = fopen(rule_path, "rb"); // 打开 ipv4_rules_file.txt     if (fh == NULL)         rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,             rule_path);      ret = fseek(fh, 0, SEEK_SET);     if (ret)         rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,             ret);      i = 0;     while (fgets(buff, LINE_MAX, fh) != NULL) { // 读取一行内容         i++;          if (is_bypass_line(buff)) // 如果是注释行 or 空行就跳过             continue;          if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { // 最大规则数量限制             printf("\nINFO: classify rule capacity %d reached\n",                 total_num);             break;         }          if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) // 过规则的 parser 解析出 rule             rte_exit(EXIT_FAILURE,                 "%s Line %u: parse rules error\n",                 rule_path, i);          if (add_classify_rule(&ntuple_filter, cls_app) != 0) // 添加这条规则到 ACL 中             rte_exit(EXIT_FAILURE, "add rule error\n");          total_num++;     }      fclose(fh);     return 0; }  /* display usage */ static void print_usage(const char *prgname) {     printf("%s usage:\n", prgname);     printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");     printf("specify the ipv4 rules file.\n");     printf("Each rule occupies one line in the file.\n"); }  /* Parse the argument given in the command line of the application */ // 解析执行 flow_classify 的命令行参数 static int parse_args(int argc, char **argv) {     int opt, ret;     char **argvopt;     int option_index;     char *prgname = argv[0];     static struct option lgopts[] = {         {OPTION_RULE_IPV4, 1, 0, 0},         {NULL, 0, 0, 0}     };      argvopt = argv;      while ((opt = getopt_long(argc, argvopt, "",                 lgopts, &option_index)) != EOF) {          switch (opt) {         /* long options */         case 0:             if (!strncmp(lgopts[option_index].name,                     OPTION_RULE_IPV4,                     sizeof(OPTION_RULE_IPV4)))                 parm_config.rule_ipv4_name = optarg;             break;         default:             print_usage(prgname);             return -1;         }     }      if (optind >= 0)         argv[optind-1] = prgname;      ret = optind-1;     optind = 1; /* reset getopt lib */     return ret; }  /*  * The main function, which does initialization and calls the lcore_main  * function.  */ int main(int argc, char *argv[]) {     struct rte_mempool *mbuf_pool;     uint8_t nb_ports;     uint16_t portid;     int ret;     int socket_id;      // 以下可以在 dpdk api data struct 中查看     struct rte_table_acl_params table_acl_params; // ACL 的参数     struct rte_flow_classify_table_params cls_table_params; // ACL中 table 的参数     struct flow_classifier *cls_app;  // 分流器     struct rte_flow_classifier_params cls_params; // classifier 的参数     uint32_t size;      /* Initialize the Environment Abstraction Layer (EAL). */     ret = rte_eal_init(argc, argv); // 初始化 EAL     if (ret < 0)         rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");      argc -= ret;     argv += ret;      /* parse application arguments (after the EAL ones) */     ret = parse_args(argc, argv); // 解析除了 EAL 之外(也就是flow_classify)的命令行参数     if (ret < 0)         rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");      /* Check that there is an even number of ports to send/receive on. */     nb_ports = rte_eth_dev_count(); // 网口数目必须是偶数     if (nb_ports < 2 || (nb_ports & 1))         rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");      /* Creates a new mempool in memory to hold the mbufs. */     // 创建mempool     mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,         MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());      if (mbuf_pool == NULL)         rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");      /* Initialize all ports. */     RTE_ETH_FOREACH_DEV(portid) // 端口初始化         if (port_init(portid, mbuf_pool) != 0)             rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",                     portid);      if (rte_lcore_count() > 1) // 只需要一个逻辑核心         printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");      socket_id = rte_eth_dev_socket_id(0); // 返回 0 号网口所在的NUMA socket id号      /* Memory allocation */     // 为分流器 cls_app 分配内存     size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));// 返回大于或等于宏定义参数的第一个缓存对齐值     cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); // DPDK的malloc:从调用该函数的核上的同一个NUMA socket的大页面区域分配堆内存。                                                             // zmalloc 就是清零 与 calloc 相似     /* rte_zmalloc 参数三个:         1. 指示这块区域分配给怎样的object类型。用于debug用途。可以写NULL         2. size (in bytes) to be allocated         3. align             if 0, 会返回一个适合任何类型变量的指针,就像 malloc             否则,返回一个内存区域是 align 的对齐倍数,显然最小对齐是高速缓存行大小,宏:RTE_CACHE_LINE_SIZE     */     if (cls_app == NULL) // 分配内存失败         rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");      // classifier 的参数 有两个: name 和 socket id     cls_params.name = "flow_classifier";     cls_params.socket_id = socket_id;      // 调用 rte_flow_classifier_create() 函数来创建rte_flow_classifier对象。     // 参数是 rte_flow_classifier_params 结构体指针     cls_app->cls = rte_flow_classifier_create(&cls_params);     if (cls_app->cls == NULL) { // 创建失败         rte_free(cls_app);         rte_exit(EXIT_FAILURE, "Cannot create classifier\n");     }      /* initialise ACL table params */     // 填写 ACL 的初始化参数     // 四个字段:     table_acl_params.name = "table_acl_ipv4_5tuple"; // 名字     table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; // 表中最大ACL规则数量:91      table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); // (todo) 一条ACL规则中的字段数量     memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); // (todo) ACL rule的详细specification      /* initialise table create params */     // 填写 表 的创建参数     // 三个字段:     cls_table_params.ops = &rte_table_acl_ops; //(todo)Table operations (specific to each table type)     cls_table_params.arg_create = &table_acl_params; // 传递给表的用于创建的参数 这里是ACL的初始化参数结构体的指针     cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; // (todo)table type       // rte_flow_classify_table_create() 在classifier对象中创建表。     // 参数两个:1. 流分类器的指针 2. 表创建的参数     ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);     if (ret) { // 返回值:成功时返回 0         rte_flow_classifier_free(cls_app->cls);         rte_free(cls_app);         rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");     }      /* read file of IPv4 5 tuple rules and initialize parameters      * for rte_flow_classify_validate and rte_flow_classify_table_entry_add      * API's.      */     // 然后它读取ipv4_rules_file.txt文件,初始化rte_flow_classify_table_entry_add() API 的参数。此API将规则添加到ACL表。     if (add_rules(parm_config.rule_ipv4_name, cls_app)) {         rte_flow_classifier_free(cls_app->cls);         rte_free(cls_app);         rte_exit(EXIT_FAILURE, "Failed to add rules\n");     }      /* Call lcore_main on the master core only. */ // todo     lcore_main(cls_app);      return 0; } 

原文:https://www.cnblogs.com/ZCplayground/p/9330696.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!