瑞士卷聚类-kmeans

匿名 (未验证) 提交于 2019-12-02 23:32:01

瑞士卷聚类

from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import KMeans
from sklearn import manifold, datasets
import matplotlib.pyplot as plt


#生成带噪声的瑞士卷数据集
X,color = datasets.samples_generator.make_swiss_roll(n_samples=1500)

#使用100个K-means簇对数据进行近似
clusters_swiss_roll = KMeans(n_clusters=100,random_state=1).fit_predict(X)

fig2 = plt.figure()
ax = fig2.add_subplot(111,projection='3d')
ax.scatter(X[:,0],X[:,1],X[:,2],c = clusters_swiss_roll,cmap = 'Spectral')

plt.show()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!