1、代码
filename = 'iris.csv'; data = csvread(filename); rawdata = data(:,2:5) a = data(data(:,1)==0,:); a = a(:,2:5); b = data(data(:,1)==1,:); b = b(:,2:5); c = data(data(:,1)==2,:); c = c(:,2:5); [coefs,scores,variances,t2] = princomp(rawdata); a=a*coefs(:,1:2); b=b*coefs(:,1:2); c=c*coefs(:,1:2); plot(a(:,1),a(:,2),'r.','markersize',20); hold on plot(b(:,1),b(:,2),'g.','markersize',20); hold on plot(c(:,1),c(:,2),'b.','markersize',20); hold off xlabel('1st Principal Component'); ylabel('2nd Principal Component'); 2、结果
文章来源: Iris数据集用主成分分析MATLAB