Iris数据集用主成分分析MATLAB

匿名 (未验证) 提交于 2019-12-02 22:56:40

1、代码

filename = 'iris.csv'; data = csvread(filename); rawdata = data(:,2:5) a = data(data(:,1)==0,:); a = a(:,2:5); b = data(data(:,1)==1,:); b = b(:,2:5); c = data(data(:,1)==2,:); c = c(:,2:5); [coefs,scores,variances,t2] = princomp(rawdata); a=a*coefs(:,1:2); b=b*coefs(:,1:2); c=c*coefs(:,1:2); plot(a(:,1),a(:,2),'r.','markersize',20); hold on plot(b(:,1),b(:,2),'g.','markersize',20); hold on plot(c(:,1),c(:,2),'b.','markersize',20); hold off xlabel('1st Principal Component'); ylabel('2nd Principal Component'); 

2、结果

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!