一、什么是决策树(decision tree)――机器学习中的一个重要的分类算法
决策树是一个类似于数据流程图的树结构:其中,每个内部节点表示一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或者类的分布,树的最顶层是根结点
根据天气情况决定出游与否的案例
二、决策树算法构建
2.1决策树的核心思路
一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常不确定的事情,或者是我们一无所知的事情,需要大量的信息====>信息量的度量就等于不确定性的 多少。也就是说变量的不确定性越大,熵就越大
信息熵的计算公司
三、IDE3决策树的Python实现
以下面这个不同年龄段的人买电脑的情况为例子建模型算法
''' Created on 2018年7月5日 使用python内的科学计算的库实现利用决策树解决问题 @author: lenovo ''' #coding:utf-8 from sklearn.feature_extraction import DictVectorizer #数据存储的格式 python自带不需要安装 import csv #预处理的包 from sklearn import preprocessing from sklearn.externals.six import StringIO from sklearn.tree import tree from sklearn.tree import export_graphviz ''' 文件保存格式需要是utf-8 window中的目录形式需要是左斜杠 F:/AA_BigData/test_data/test1.csv excel表格存储成csv格式并且是utf-8格式的编码 ''' ''' 决策树数据源读取 scklearn要求的数据类型 特征值属性必须是数值型的 需要对数据进行预处理 ''' #装特征的值 featureList=[] #装类别的词 labelList=[] with open("F:/AA_BigData/test_data/decision_tree.csv", "r",encoding="utf-8") as csvfile: decision =csv.reader(csvfile) headers =[] row =1 for item in decision: if row==1: row=row+1 for head in item: headers.append(head) else: itemDict={} labelList.append(item[len(item)-1]) for num in range(1,len(item)-1): # print(item[num]) itemDict[headers[num]]=item[num] featureList.append(itemDict) print(headers) print(labelList) print(featureList) ''' 将原始数据转换成包含有字典的List 将建好的包含字典的list用DictVectorizer对象转换成0-1矩阵 ''' vec =DictVectorizer() dumyX =vec.fit_transform(featureList).toarray(); #对于类别使用同样的方法 lb =preprocessing.LabelBinarizer() dumyY=lb.fit_transform(labelList) print(dumyY) ''' 1.构建分类器――决策树模型 2.使用数据训练决策树模型 ''' clf =tree.DecisionTreeClassifier(criterion="entropy") clf.fit(dumyX,dumyY) print(str(clf)) ''' 1.将生成的分类器转换成dot格式的 数据 2.在命令行中dot -Tpdf iris.dot -o output.pdf将dot文件转换成pdf图的文件 ''' #视频上讲的不适用python3.5 with open("F:/AA_BigData/test_data/decisiontree.dot", "w") as wFile: export_graphviz(clf,out_file=wFile,feature_names=vec.get_feature_names()) Graphvize对决策树的可视化