HBase基础知识

生来就可爱ヽ(ⅴ<●) 提交于 2019-11-30 09:37:17

Hbase是什么

HBase是一种构建在HDFS之上的分布式、面向列的存储系统。在需要实时读写、随机访问超大规模数据集时,可以使用HBase。

尽管已经有许多数据存储和访问的策略和实现方法,但事实上大多数解决方案,特别是一些关系类型的,在构建时并没有考虑超大规模和分布式的特点。许多商家通过复制和分区的方法来扩充数据库使其突破单个节点的界限,但这些功能通常都是事后增加的,安装和维护都和复杂。同时,也会影响RDBMS的特定功能,例如联接、复杂的查询、触发器、视图和外键约束这些操作在大型的RDBMS上的代价相当高,甚至根本无法实现。

HBase从另一个角度处理伸缩性问题。它通过线性方式从下到上增加节点来进行扩展。HBase不是关系型数据库,也不支持SQL,但是它有自己的特长,这是RDBMS不能处理的,HBase巧妙地将大而稀疏的表放在商用的服务器集群上。

HBase 是Google Bigtable 的开源实现,与Google Bigtable 利用GFS作为其文件存储系统类似, HBase 利用Hadoop HDFS 作为其文件存储系统;Google 运行MapReduce 来处理Bigtable中的海量数据, HBase 同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable 利用Chubby作为协同服务, HBase 利用Zookeeper作为对应。
 

HBase数据模型

Row Key

与 NoSQL 数据库一样,Row Key 是用来检索记录的主键。访问 HBase table 中的行,只有三种方式:

1)通过单个 Row Key 访问。

2)通过 Row Key 的 range 全表扫描。

3)Row Key 可以使任意字符串(最大长度是64KB,实际应用中长度一般为 10 ~ 100bytes),在HBase 内部,Row Key 保存为字节数组。

在存储时,数据按照* Row Key 的字典序(byte order)排序存储*。设计 Key 时,要充分排序存储这个特性,将经常一起读取的行存储到一起(位置相关性)。

注意 字典序对 int 排序的结果是 1,10,100,11,12,13,14,15,16,17,18,19,20,21,…, 9,91,92,93,94,95,96,97,98,99。要保存整形的自然序,Row Key 必须用 0 进行左填充。

行的一次读写是原子操作(不论一次读写多少列)。这个设计决策能够使用户很容易理解程序在对同一个行进行并发更新操作时的行为。

列族

HBase 表中的每个列都归属于某个列族。列族是表的 Schema 的一部分(而列不是),必须在使用表之前定义。列名都以列族作为前缀,例如 courses:history、courses:math 都属于 courses 这个列族。

访问控制、磁盘和内存的使用统计都是在列族层面进行的。在实际应用中,列族上的控制权限能帮助我们管理不同类型的应用, 例如,允许一些应用可以添加新的基本数据、一些应用可以读取基本数据并创建继承的列族、 
一些应用则只允许浏览数据(甚至可能因为隐私的原因不能浏览所有数据)。

时间戳

HBase 中通过 Row 和 Columns 确定的一个存储单元称为 Cell。每个 Cell 都保存着同一份数据的多个版本。 版本通过时间戳来索引,时间戳的类型是 64 位整型。时间戳可以由HBase(在数据写入时自动)赋值, 
此时时间戳是精确到毫秒的当前系统时间。时间戳也 可以由客户显示赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个 Cell 中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。

为了避免数据存在过多版本造成的管理(包括存储和索引)负担,HBase 提供了两种数据版本回收方式。 一是保存数据的最后 n 个版本,二是保存最近一段时间内的版本(比如最近七天)。用户可以针对每个列族进行设置。

Cell

Cell 是由 {row key,column(=< family> + < label>),version} 唯一确定的单元。Cell 中的数据是没有类型的,全部是字节码形式存储。

 

Hbase基本组件说明:

Client
包含访问HBase的接口,并维护cache来加快对HBase的访问,比如region的位置信息
Master
为Region server分配region
负责Region server的负载均衡
发现失效的Region server并重新分配其上的region
管理用户对table的增删改查操作
Region Server
Regionserver维护region,处理对这些region的IO请求
Regionserver负责切分在运行过程中变得过大的region
Zookeeper作用
通过选举,保证任何时候,集群中只有一个master,Master与RegionServers 启动时会向ZooKeeper注册
存贮所有Region的寻址入口
实时监控Region server的上线和下线信息。并实时通知给Master
存储HBase的schema和table元数据
默认情况下,HBase 管理ZooKeeper 实例,比如, 启动或者停止ZooKeeper
Zookeeper的引入使得Master不再是单点故障

HMaster的作用


为Region server分配region
负责Region server的负载均衡
发现失效的Region server并重新分配其上的region。
HDFS上的垃圾文件回收。
处理schema更新请求。

 


HRegionServer的作用


维护master分配给他的region,处理对这些region的io请求。
负责切分正在运行过程中变的过大的region。


注意:client访问hbase上的数据时不需要master的参与,因为数据寻址访问zookeeper和region server,而数据读写访问region server。master仅仅维护table和region的元数据信息,而table的元数据信息保存在zookeeper上,因此master负载很低。

 

HRegion

table在行的方向上分隔为多个Region。Region是HBase中分布式存储和负载均衡的最小单元,即不同的region可以分别在不同的Region Server上,但同一个Region是不会拆分到多个server上。

Region按大小分隔,每个表一般是只有一个region。随着数据不断插入表,region不断增大,当region的某个列族达到一个阈值(默认256M)时就会分成两个新的region。

每个region由以下信息标识:        


< 表名,startRowkey,创建时间>
由目录表(-ROOT-和.META.)记录该region的endRowkey


Region被分配给哪个Region Server是完全动态的,所以需要机制来定位Region具体在哪个region server。 
下面我们来看看Region是如何被定位的。

 

HRegion定位

 


通过zk里的文件/hbase/rs得到-ROOT-表的位置。-ROOT-表只有一个region。
通过-ROOT-表查找.META.表的第一个表中相应的region的位置。其实-ROOT-表是.META.表的第一个region;.META.表中的每一个region 
在-ROOT-表中都是一行记录。
通过.META.表找到所要的用户表region的位置。用户表中的每个region在.META.表中都是一行记录。


-ROOT-表永远不会被分隔为多个region,保证了最多需要三次跳转,就能定位到任意的region。client会将查询的位置 信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行6次网络来回,才能定位到正确的region,其中三次用来发现 缓存失效,另外三次用来获取位置信息。

提示:

-ROOT-表:表包含.META.表所在的region列表,该表只有一个Region;Zookeeper中记录了-ROOT-表的location

.META.表:表包含所有的用户空间region列表,以及Region Server的服务器地址

 

Store

每一个region由一个或多个store组成,至少是一个store,hbase会把一起访问的数据放在一个store里面,即为每个 ColumnFamily建一个store,如果有几个ColumnFamily,也就有几个Store。一个Store由一个memStore和0或者 多个StoreFile组成。 HBase以store的大小来判断是否需要切分region

 

MemStore

memStore 是放在内存里的。保存修改的数据即keyValues。当memStore的大小达到一个阀值(默认64MB)时,memStore会被flush到文 件,即生成一个快照。目前hbase 会有一个线程来负责memStore的flush操作。

 

StoreFile

memStore内存中的数据写到文件后就是StoreFile,StoreFile底层是以HFile的格式保存。

 

HLog

HLog(WAL log):WAL意为write ahead log,用来做灾难恢复使用,HLog记录数据的所有变更,一旦region server 宕机,就可以从log中进行恢复。

HLog文件就是一个普通的Hadoop Sequence File, Sequence File的value是key时HLogKey对象,其中记录了写入数据的归属信息,除了table和region名字外,还同时包括sequence number和timestamp,timestamp是写入时间,sequence number的起始值为0,或者是最近一次存入文件系统中的sequence number。 Sequence File的value是HBase的KeyValue对象,即对应HFile中的KeyValue。

 

LogFlusher

前面提到,数据以KeyValue形式到达HRegionServer,将写入WAL之后,写入一个SequenceFile。看过去没问题,但是因为数 据流在写入文件系统时,经常会缓存以提高性能。这样,有些本以为在日志文件中的数据实际在内存中。 
这里,我们提供了一个LogFlusher的类。它调用 HLog.optionalSync(),后者根据 hbase.regionserver.optionallogflushinterval (默认是10秒),定期调用Hlog.sync()。另外,HLog.doWrite()也会根据 
hbase.regionserver.flushlogentries (默认100秒)定期调用Hlog.sync()。Sync() 本身调用HLog.Writer.sync(),它由SequenceFileLogWriter实现。

 

LogRoller

Log的大小通过$HBASE_HOME/conf/hbase-site.xml 的 hbase.regionserver.logroll.period 限制,默认是一个小时。所以每60分钟,会打开一个新的log文件。久而久之,会有一大堆的文件需要维护。首先,LogRoller调用 HLog.rollWriter(),定时滚动日志,之后,利用HLog.cleanOldLogs()可以清除旧的日志。它首先取得存储文件中的最大的 sequence number,之后检查是否存在一个log所有的条目的“sequence number”均低于这个值,如果存在,将删除这个log。 每个region server维护一个HLog,而不是每一个region一个,这样不同region(来自不同的table)的日志会混在一起,这样做的目的是不断追加 单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高table的写性能。带来麻烦的时,如果一个region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其他region server上进行恢复。
 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!