问题
EDIT: input
very new to this.
I have a similar problem to this: group by and then count missing variables?
Taking the input data from that question:
df1 <- data.frame(
Z = sample(LETTERS[1:5], size = 10000, replace = T),
X1 = sample(c(1:10,NA), 10000, replace = T),
X2 = sample(c(1:25,NA), 10000, replace = T),
X3 = sample(c(1:5,NA), 10000, replace = T))
as one user proposed, it's possible to use summarise_each
:
df1 %>%
group_by(Z) %>%
summarise_each(funs(sum(is.na(.))))
#Source: local data frame [5 x 4]
#
# Z X1 X2 X3
# (fctr) (int) (int) (int)
#1 A 169 77 334
#2 B 170 77 316
#3 C 159 78 348
#4 D 181 79 326
#5 E 174 69 341
However, I would like to get only the total number of missing values per group.
I've also tried this but it didn't work: R count NA by group
Ideally, it should give me something like:
# Z sumNA
# (fctr) (int)
#1 A 580
#2 B 493
#3 C 585
#4 D 586
#5 E 584
Thanks in advance.
回答1:
data.table
solution
library(data.table)
setDT(df1)
df1[, .(sumNA = sum(is.na(.SD))), by = Z]
# Z sumNA
# 1: A 559
# 2: C 661
# 3: E 596
# 4: B 597
# 5: D 560
dplyr
solution using rowSums(.[-1])
, i.e. row-sums for all columns except the first.
library(dplyr)
df1 %>%
group_by(Z) %>%
summarise_all(~sum(is.na(.))) %>%
transmute(Z, sumNA = rowSums(.[-1]))
# # A tibble: 5 x 2
# Z sumNA
# <fct> <dbl>
# 1 A 559
# 2 B 597
# 3 C 661
# 4 D 560
# 5 E 596
回答2:
If your data looks like the linked post:
df1 <- data.frame(
Z = as.factor(sample(LETTERS[1:5], size = 10000, replace = T)),
X1 = sample(c(1:10,NA), 10000, replace = T),
X2 = sample(c(1:25,NA), 10000, replace = T),
X3 = sample(c(1:5,NA), 10000, replace = T)
)
You can do the following in base R:
res <- sapply(split(df1[-1], f = df1$Z), function(x) colSums(is.na(x)))
print(res)
# A B C D E
#X1 193 180 199 170 183
#X2 74 68 79 90 87
#X3 350 349 340 336 328
If you absolutely need it transposed, you can call t(res)
:
print(t(res))
# X1 X2 X3
#A 193 74 350
#B 180 68 349
#C 199 79 340
#D 170 90 336
#E 183 87 328
Edit: If you want the sum of all NAs and not within each variable the following small modification of the above works:
res2 <- sapply(split(df1[-1], f = df1$Z), function(x) sum(is.na(x)))
print(res2)
# A B C D E
#589 588 569 646 598
Alternatively, colSums(res)
would give you the same. Again, t()
if needed as a column.
回答3:
You can use the tidyverse
approach.
require(tidyverse)
#Sample data
dat <- data.frame(group = rep(c("a", "b", "c", "d", "g"), 3),
y = rep(c(1, NA, 2, NA, 3), 3))
dat %>%
group_by(group) %>%
summarise(sumNA = sum(is.na(y)))
Output:
group sumNA
<fct> <int>
1 a 0
2 b 3
3 c 0
4 d 3
5 g 0
Edit
However, if you have more than one column, you can use summarize_all
(or summarize_at
if you'd like to specify the columns; thank you @ bschneidr for the comment):
#Sample data
set.seed(123)
dat <- data.frame(group = sample(letters[1:4], 10, replace = T),
x = sample(c(1,NA), 10, replace = T),
y = sample(c(1,NA), 10, replace = T),
z = sample(c(1, NA), 10, replace = T))
dat %>%
group_by(group) %>%
summarize_all(.funs = funs('NA' = sum(is.na(.))))
# A tibble: 4 x 4
group x_NA y_NA z_NA
<fct> <int> <int> <int>
1 a 1 1 0
2 b 3 2 2
3 c 0 1 1
4 d 1 4 2
来源:https://stackoverflow.com/questions/53195961/count-total-missing-values-by-group