openMP 处理for循环
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquares<PointInT, PointOutT>::performProcessing (PointCloudOut &output)
{
// Compute the number of coefficients
nr_coeff_ = (order_ + 1) * (order_ + 2) / 2;
size_t mls_result_index = 0;
#ifdef _OPENMP
// (Maximum) number of threads
const unsigned int threads = threads_ == 0 ? 1 : threads_;
// Create temporaries for each thread in order to avoid synchronization
typename PointCloudOut::CloudVectorType projected_points (threads);
typename NormalCloud::CloudVectorType projected_points_normals (threads);
std::vector<PointIndices> corresponding_input_indices (threads);
#endif
// For all points
#ifdef _OPENMP
#pragma omp parallel for schedule (dynamic,1000) num_threads (threads)
#endif
for (int cp = 0; cp < static_cast<int> (indices_->size ()); ++cp)
{
// Allocate enough space to hold the results of nearest neighbor searches
// \note resize is irrelevant for a radiusSearch ().
std::vector<int> nn_indices;
std::vector<float> nn_sqr_dists;
// Get the initial estimates of point positions and their neighborhoods
if (searchForNeighbors ((*indices_)[cp], nn_indices, nn_sqr_dists))
{
// Check the number of nearest neighbors for normal estimation (and later for polynomial fit as well)
if (nn_indices.size () >= 3)
{
// This thread's ID (range 0 to threads-1)
#ifdef _OPENMP
const int tn = omp_get_thread_num ();
// Size of projected points before computeMLSPointNormal () adds points
size_t pp_size = projected_points[tn].size ();
#else
PointCloudOut projected_points;
NormalCloud projected_points_normals;
#endif
// Get a plane approximating the local surface's tangent and project point onto it
const int index = (*indices_)[cp];
if (cache_mls_results_)
mls_result_index = index; // otherwise we give it a dummy location.
#ifdef _OPENMP
computeMLSPointNormal (index, nn_indices, projected_points[tn], projected_points_normals[tn], corresponding_input_indices[tn], mls_results_[mls_result_index]);
// Copy all information from the input cloud to the output points (not doing any interpolation)
for (size_t pp = pp_size; pp < projected_points[tn].size (); ++pp)
copyMissingFields (input_->points[(*indices_)[cp]], projected_points[tn][pp]);
#else
computeMLSPointNormal (index, nn_indices, projected_points, projected_points_normals, *corresponding_input_indices_, mls_results_[mls_result_index]);
// Append projected points to output
output.insert (output.end (), projected_points.begin (), projected_points.end ());
if (compute_normals_)
normals_->insert (normals_->end (), projected_points_normals.begin (), projected_points_normals.end ());
#endif
}
}
}
#ifdef _OPENMP
// Combine all threads' results into the output vectors
for (unsigned int tn = 0; tn < threads; ++tn)
{
output.insert (output.end (), projected_points[tn].begin (), projected_points[tn].end ());
corresponding_input_indices_->indices.insert (corresponding_input_indices_->indices.end (),
corresponding_input_indices[tn].indices.begin (), corresponding_input_indices[tn].indices.end ());
if (compute_normals_)
normals_->insert (normals_->end (), projected_points_normals[tn].begin (), projected_points_normals[tn].end ());
}
#endif
// Perform the distinct-cloud or voxel-grid upsampling
performUpsampling (output);
}
template <typename PointT> void
pcl::FastBilateralFilterOMP<PointT>::applyFilter (PointCloud &output)
{
if (!input_->isOrganized ())
{
PCL_ERROR ("[pcl::FastBilateralFilterOMP] Input cloud needs to be organized.\n");
return;
}
copyPointCloud (*input_, output);
float base_max = -std::numeric_limits<float>::max (),
base_min = std::numeric_limits<float>::max ();
bool found_finite = false;
for (size_t x = 0; x < output.width; ++x)
{
for (size_t y = 0; y < output.height; ++y)
{
if (pcl_isfinite (output (x, y).z))
{
if (base_max < output (x, y).z)
base_max = output (x, y).z;
if (base_min > output (x, y).z)
base_min = output (x, y).z;
found_finite = true;
}
}
}
if (!found_finite)
{
PCL_WARN ("[pcl::FastBilateralFilterOMP] Given an empty cloud. Doing nothing.\n");
return;
}
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
for (long int i = 0; i < static_cast<long int> (output.size ()); ++i)
if (!pcl_isfinite (output.at(i).z))
output.at(i).z = base_max;
const float base_delta = base_max - base_min;
const size_t padding_xy = 2;
const size_t padding_z = 2;
const size_t small_width = static_cast<size_t> (static_cast<float> (input_->width - 1) / sigma_s_) + 1 + 2 * padding_xy;
const size_t small_height = static_cast<size_t> (static_cast<float> (input_->height - 1) / sigma_s_) + 1 + 2 * padding_xy;
const size_t small_depth = static_cast<size_t> (base_delta / sigma_r_) + 1 + 2 * padding_z;
Array3D data (small_width, small_height, small_depth);
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
for (long int i = 0; i < static_cast<long int> (small_width * small_height); ++i)
{
size_t small_x = static_cast<size_t> (i % small_width);
size_t small_y = static_cast<size_t> (i / small_width);
size_t start_x = static_cast<size_t>(
std::max ((static_cast<float> (small_x) - static_cast<float> (padding_xy) - 0.5f) * sigma_s_ + 1, 0.f));
size_t end_x = static_cast<size_t>(
std::max ((static_cast<float> (small_x) - static_cast<float> (padding_xy) + 0.5f) * sigma_s_ + 1, 0.f));
size_t start_y = static_cast<size_t>(
std::max ((static_cast<float> (small_y) - static_cast<float> (padding_xy) - 0.5f) * sigma_s_ + 1, 0.f));
size_t end_y = static_cast<size_t>(
std::max ((static_cast<float> (small_y) - static_cast<float> (padding_xy) + 0.5f) * sigma_s_ + 1, 0.f));
for (size_t x = start_x; x < end_x && x < input_->width; ++x)
{
for (size_t y = start_y; y < end_y && y < input_->height; ++y)
{
const float z = output (x,y).z - base_min;
const size_t small_z = static_cast<size_t> (static_cast<float> (z) / sigma_r_ + 0.5f) + padding_z;
Eigen::Vector2f& d = data (small_x, small_y, small_z);
d[0] += output (x,y).z;
d[1] += 1.0f;
}
}
}
std::vector<long int> offset (3);
offset[0] = &(data (1,0,0)) - &(data (0,0,0));
offset[1] = &(data (0,1,0)) - &(data (0,0,0));
offset[2] = &(data (0,0,1)) - &(data (0,0,0));
Array3D buffer (small_width, small_height, small_depth);
for (size_t dim = 0; dim < 3; ++dim)
{
for (size_t n_iter = 0; n_iter < 2; ++n_iter)
{
Array3D* current_buffer = (n_iter % 2 == 1 ? &buffer : &data);
Array3D* current_data =(n_iter % 2 == 1 ? &data : &buffer);
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
for(long int i = 0; i < static_cast<long int> ((small_width - 2)*(small_height - 2)); ++i)
{
size_t x = static_cast<size_t> (i % (small_width - 2) + 1);
size_t y = static_cast<size_t> (i / (small_width - 2) + 1);
const long int off = offset[dim];
Eigen::Vector2f* d_ptr = &(current_data->operator() (x,y,1));
Eigen::Vector2f* b_ptr = &(current_buffer->operator() (x,y,1));
for(size_t z = 1; z < small_depth - 1; ++z, ++d_ptr, ++b_ptr)
*d_ptr = (*(b_ptr - off) + *(b_ptr + off) + 2.0 * (*b_ptr)) / 4.0;
}
}
}
// Note: this works because there are an even number of iterations.
// If there were an odd number, we would need to end with a:
// std::swap (data, buffer);
if (early_division_)
{
for (std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> >::iterator d = data.begin (); d != data.end (); ++d)
*d /= ((*d)[0] != 0) ? (*d)[1] : 1;
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
for (long int i = 0; i < static_cast<long int> (input_->size ()); ++i)
{
size_t x = static_cast<size_t> (i % input_->width);
size_t y = static_cast<size_t> (i / input_->width);
const float z = output (x,y).z - base_min;
const Eigen::Vector2f D = data.trilinear_interpolation (static_cast<float> (x) / sigma_s_ + padding_xy,
static_cast<float> (y) / sigma_s_ + padding_xy,
z / sigma_r_ + padding_z);
output(x,y).z = D[0];
}
}
else
{
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
for (long i = 0; i < static_cast<long int> (input_->size ()); ++i)
{
size_t x = static_cast<size_t> (i % input_->width);
size_t y = static_cast<size_t> (i / input_->width);
const float z = output (x,y).z - base_min;
const Eigen::Vector2f D = data.trilinear_interpolation (static_cast<float> (x) / sigma_s_ + padding_xy,
static_cast<float> (y) / sigma_s_ + padding_xy,
z / sigma_r_ + padding_z);
output (x,y).z = D[0] / D[1];
}
}
}
template <typename PointInT, typename PointOutT> void
pcl::NormalEstimationOMP<PointInT, PointOutT>::computeFeature (PointCloudOut &output)
{
// Allocate enough space to hold the results
// \note This resize is irrelevant for a radiusSearch ().
std::vector<int> nn_indices (k_);
std::vector<float> nn_dists (k_);
output.is_dense = true;
// Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
if (input_->is_dense)
{
#ifdef _OPENMP
#pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
#endif
// Iterating over the entire index vector
for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
{
Eigen::Vector4f n;
if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0 ||
!computePointNormal (*surface_, nn_indices, n, output.points[idx].curvature))
{
output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
output.is_dense = false;
continue;
}
output.points[idx].normal_x = n[0];
output.points[idx].normal_y = n[1];
output.points[idx].normal_z = n[2];
flipNormalTowardsViewpoint (input_->points[(*indices_)[idx]], vpx_, vpy_, vpz_,
output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]);
}
}
else
{
#ifdef _OPENMP
#pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
#endif
// Iterating over the entire index vector
for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
{
Eigen::Vector4f n;
if (!isFinite ((*input_)[(*indices_)[idx]]) ||
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0 ||
!computePointNormal (*surface_, nn_indices, n, output.points[idx].curvature))
{
output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
output.is_dense = false;
continue;
}
output.points[idx].normal_x = n[0];
output.points[idx].normal_y = n[1];
output.points[idx].normal_z = n[2];
flipNormalTowardsViewpoint (input_->points[(*indices_)[idx]], vpx_, vpy_, vpz_,
output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]);
}
}
}
来源:oschina
链接:https://my.oschina.net/u/4335170/blog/3335956