项目 | 内容 |
---|---|
这个作业属于哪个课程 | https://edu.cnblogs.com/campus/buaa/BUAA-AI-2019 |
这个作业的要求在哪里 | https://edu.cnblogs.com/campus/buaa/BUAA-AI-2019/homework/2787 |
我在这个课程的目标是 | 学习,了解并实践深度学习的实际工程应用 |
这个作业在哪个具体方面帮助我实现目标 | 学会用sigmoid激活函数来实现二分类 |
作业正文 | 如下 |
正文
一、样本与特征:
1.逻辑与门
x1=0,x2=0,y=0
x1=0,x2=1,y=0
x1=1,x2=0,y=0
x1=1,x2=1,y=1
2.逻辑或门
x1=0,x2=0,y=0
x1=0,x2=1,y=1
x1=1,x2=0,y=1
x1=1,x2=1,y=1
二、python代码
import numpy as np import matplotlib.pyplot as plt def Sigmoid(x): s = 1 / (1 + np.exp(-x)) return s def ForwardCalculationBatch(W, B, batch_X): Z = np.dot(W, batch_X) + B A = Sigmoid(Z) return A # 反向计算 def BackPropagationBatch(batch_X, batch_Y, A): m = batch_X.shape[1] dZ = A - batch_Y # dZ列相加,即一行内的所有元素相加 dB = dZ.sum(axis=1, keepdims=True) / m dW = np.dot(dZ, batch_X.T) / m return dW, dB # 更新权重参数 def UpdateWeights(W, B, dW, dB, eta): W = W - eta * dW B = B - eta * dB return W, B # 计算损失函数值 def CheckLoss(W, B, X, Y): m = X.shape[1] A = ForwardCalculationBatch(W, B, X) p4 = np.multiply(1 - Y, np.log(1 - A)) p5 = np.multiply(Y, np.log(A)) LOSS = np.sum(-(p4 + p5)) # binary classification loss = LOSS / m return loss # 初始化权重值 def InitialWeights(num_input, num_output): W = np.zeros((num_output, num_input)) B = np.zeros((num_output, 1)) return W, B def train(X, Y, ForwardCalculationBatch, CheckLoss): num_example = X.shape[1] num_feature = X.shape[0] num_category = Y.shape[0] eta = 0.5 max_epoch = 10000 W, B = InitialWeights(num_feature, num_category) loss = 5 error = 2e-3 for epoch in range(max_epoch): for i in range(num_example): # get x and y value for one sample x = X[:, i].reshape(num_feature, 1) y = Y[:, i].reshape(1, 1) # get z from x,y batch_a = ForwardCalculationBatch(W, B, x) # calculate gradient of w and b dW, dB = BackPropagationBatch(x, y, batch_a) # update w,b W, B = UpdateWeights(W, B, dW, dB, eta) # end if # end for # calculate loss for this batch loss = CheckLoss(W, B, X, Y) while epoch % 300 == 0: print(epoch, loss, W, B) break # end if if loss < error: print("The final values:", epoch, loss, W, B) break # end for return W, B def ShowResult(W, B, X, Y, title): w = -W[0, 0] / W[0, 1] b = -B[0, 0] / W[0, 1] x = np.array([0, 1]) y = w * x + b plt.plot(x, y) for i in range(X.shape[1]): if Y[0, i] == 0: plt.scatter(X[0, i], X[1, i], marker="o", c='b', s=64) else: plt.scatter(X[0, i], X[1, i], marker="^", c='r', s=64) plt.axis([-0.1, 1.1, -0.1, 1.1]) plt.title(title) plt.show() def Read_AND_Data(): X = np.array([0,0,1,1,0,1,0,1]).reshape(2,4) Y = np.array([0,0,0,1]).reshape(1,4) return X,Y def Read_OR_Data(): X = np.array([0,0,1,1,0,1,0,1]).reshape(2,4) Y = np.array([0,1,1,1]).reshape(1,4) return X,Y if __name__ == '__main__': # read data X,Y = Read_AND_Data() #X,Y = Read_OR_Data() W, B = train(X, Y, ForwardCalculationBatch, CheckLoss) print("w=",W) print("b=",B) ShowResult(W,B,X,Y,"AND") # ShowResult(W,B,X,Y,"OR")
- 运行结果
逻辑与门:
0 0.6245484575236854 [[0.18011784 0.15364302]] [[-0.28879391]]
300 0.027339685455466577 [[6.52272529 6.50253583]] [[-9.90697882]]
600 0.013975165664463551 [[7.87148038 7.86117736]] [[-11.95217533]]
900 0.009376095204375197 [[8.67221962 8.66531253]] [[-13.16092597]]
1200 0.007051854836148108 [[9.24327268 9.23808001]] [[-14.02137546]]
1500 0.005650047903671916 [[9.68732874 9.68316941]] [[-14.68979595]]
1800 0.004712705600242369 [[10.05067513 10.04720648]] [[-15.23637875]]
2100 0.0040418937198415635 [[10.35816415 10.35518963]] [[-15.69873146]]
2400 0.0035381273319316253 [[10.6246911 10.62208758]] [[-16.09936261]]
2700 0.0031459420488770965 [[10.85989049 10.85757574]] [[-16.45281634]]
3000 0.00283197534239208 [[11.07035384 11.06827024]] [[-16.76903553]]
3300 0.0025749566274840623 [[11.26078966 11.25889527]] [[-17.05511842]]
3600 0.0023606850197692426 [[11.43467858 11.43294191]] [[-17.31630961]]
3900 0.002179317929049387 [[11.59466624 11.59306305]] [[-17.55659399]]
4200 0.00202381848105744 [[11.74281065 11.7413219 ]] [[-17.77907031]]
The final values: 4251 0.0019995629053717527 [[11.76694002 11.76546912]] [[-17.81530488]]
逻辑或门:
0 0.4729860470260927 [[0.40065629 0.43563026]] [[0.43174454]]
300 0.015295923172448746 [[7.65285426 7.66552765]] [[-3.35216603]]
600 0.007618291957258146 [[9.06017234 9.06669204]] [[-4.06406698]]
900 0.005064017080305972 [[9.88144399 9.88582783]] [[-4.47737733]]
1200 0.0037905587598134403 [[10.46298983 10.46629092]] [[-4.76947084]]
1500 0.003028210901112515 [[10.91342626 10.9160732 ]] [[-4.99547549]]
1800 0.0025208676966291367 [[11.28106679 11.28327582]] [[-5.17981738]]
2100 0.00215898093382287 [[11.59164557 11.59354095]] [[-5.33547799]]
The final values: 2267 0.001999175331571145 [[11.74573383 11.74749036]] [[-5.41268583]]
来源:https://www.cnblogs.com/lianyuan/p/10665226.html