待整理
1. SVD丨博客1丨分解方法丨
补充知识:
1). 正交矩阵的性质:如果 是正交矩阵(即),那么
代码实现:
pytorch函数
from PIL import Image
pil_img = Image.open('1.jpg')
tensor_img = T.ToTensor()(pil_img)
input2 = tensor_img
u, s, v = torch.svd(input2, compute_uv=True)
print(s.shape)
print(u.shape)
print(v.shape)
dimsion_start = 0
dimsion_end = 9
fig = plt.figure()
for d_end in range(1, dimsion_end+1):
ax = fig.add_subplot(3,3,d_end)
u_ = u[:,:,dimsion_start:d_end]
v_ = v[:,:,dimsion_start:d_end]
s_mat = torch.diag_embed(s[:,dimsion_start:d_end])
tensor_new = u_.bmm(s_mat).bmm(v_.transpose(2,1))
pil_img_new = T.ToPILImage()(tensor_new)
ax.imshow(pil_img_new)
# plt.imshow(pil_img_new)
plt.show()
2. PCA降维。 丨通俗讲解丨全面原理分析丨
- 协方差与特征向量结合理解。| 博客园 |
来源:CSDN
作者:小小的行者
链接:https://blog.csdn.net/jdzwanghao/article/details/104815908