Using dplyr to group_by and conditionally mutate a dataframe by group

不想你离开。 提交于 2020-02-22 06:19:22

问题


I'd like to use dplyr functions to group_by and conditionally mutate a df. Given this sample data:

A   B   C   D
1   1   1   0.25
1   1   2   0
1   2   1   0.5
1   2   2   0
1   3   1   0.75
1   3   2   0.25
2   1   1   0
2   1   2   0.5
2   2   1   0
2   2   2   0
2   3   1   0
2   3   2   0
3   1   1   0.5
3   1   2   0
3   2   1   0.25
3   2   2   1
3   3   1   0
3   3   2   0.75

I want to use new column E to categorize A by whether B == 1, C == 2, and D > 0. For each unique value of A for which all of these conditions hold true, then E = 1, else E = 0. So, the output should look like this:

A   B   C   D    E
1   1   1   0.25 0
1   1   2   0    0
1   2   1   0.5  0
1   2   2   0    0
1   3   1   0.75 0
1   3   2   0.25 0
2   1   1   0    1
2   1   2   0.5  1
2   2   1   0    1
2   2   2   0    1
2   3   1   0    1
2   3   2   0    1
3   1   1   0.5  0
3   1   2   0    0
3   2   1   0.25 0
3   2   2   1    0
3   3   1   0    0
3   3   2   0.75 0

I initially tried this code but the conditionals don't seem to be working right:

 foo$E <- foo %>% 
    group_by(A) %>% 
    mutate(E = {if (B == 1 & C == 2 & D > 0) 1 else 0})

Any insights appreciated. Thanks!


回答1:


@eipi10 's answer works. However, I think you should use case_when instead of ifelse. It is vectorised and will be much faster on larger datasets.

foo %>% group_by(A) %>%
  mutate(E = case_when(any(B == 1 & C == 2 & D > 0) ~ 1, TRUE ~ 0))


来源:https://stackoverflow.com/questions/42980374/using-dplyr-to-group-by-and-conditionally-mutate-a-dataframe-by-group

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!