pytorch之 CNN

送分小仙女□ 提交于 2019-11-27 14:51:37
  1 # library
  2 # standard library
  3 import os
  4 
  5 # third-party library
  6 import torch
  7 import torch.nn as nn
  8 import torch.utils.data as Data
  9 import torchvision
 10 import matplotlib.pyplot as plt
 11 
 12 # torch.manual_seed(1)    # reproducible
 13 
 14 # Hyper Parameters
 15 EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
 16 BATCH_SIZE = 50
 17 LR = 0.001              # learning rate
 18 DOWNLOAD_MNIST = False
 19 
 20 
 21 # Mnist digits dataset
 22 if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
 23     # not mnist dir or mnist is empyt dir
 24     DOWNLOAD_MNIST = True
 25 
 26 train_data = torchvision.datasets.MNIST(
 27     root='./mnist/',
 28     train=True,                                     # this is training data
 29     transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
 30                                                     # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
 31     download=DOWNLOAD_MNIST,
 32 )
 33 
 34 # # plot one example
 35 # print(train_data.train_data.size())                 # (60000, 28, 28)
 36 # print(train_data.train_labels.size())               # (60000)
 37 # plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
 38 # plt.title('%i' % train_data.train_labels[0])
 39 # plt.show()
 40 
 41 # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
 42 train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
 43 # pick 2000 samples to speed up testing
 44 test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
 45 test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
 46 test_y = test_data.test_labels[:2000]
 47 
 48 
 49 class CNN(nn.Module):
 50     def __init__(self):
 51         super(CNN, self).__init__()
 52         self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
 53             nn.Conv2d(
 54                 in_channels=1,              # input height
 55                 out_channels=16,            # n_filters
 56                 kernel_size=5,              # filter size
 57                 stride=1,                   # filter movement/step
 58                 padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
 59             ),                              # output shape (16, 28, 28)
 60             nn.ReLU(),                      # activation
 61             nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
 62         )
 63         self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
 64             nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
 65             nn.ReLU(),                      # activation
 66             nn.MaxPool2d(2),                # output shape (32, 7, 7)
 67         )
 68         self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes
 69 
 70     def forward(self, x):
 71         x = self.conv1(x)
 72         x = self.conv2(x)
 73         x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
 74         output = self.out(x)
 75         return output, x    # return x for visualization
 76 
 77 
 78 cnn = CNN()
 79 print(cnn)  # net architecture
 80 
 81 optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
 82 loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
 83 
 84 # following function (plot_with_labels) is for visualization, can be ignored if not interested
 85 from matplotlib import cm
 86 try: from sklearn.manifold import TSNE; HAS_SK = True
 87 except: HAS_SK = False; print('Please install sklearn for layer visualization')
 88 def plot_with_labels(lowDWeights, labels):
 89     plt.cla()
 90     X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
 91     for x, y, s in zip(X, Y, labels):
 92         c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
 93     plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)
 94 
 95 plt.ion()
 96 # training and testing
 97 for epoch in range(EPOCH):
 98     for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
 99 
100         output = cnn(b_x)[0]               # cnn output
101         loss = loss_func(output, b_y)   # cross entropy loss
102         optimizer.zero_grad()           # clear gradients for this training step
103         loss.backward()                 # backpropagation, compute gradients
104         optimizer.step()                # apply gradients
105 
106         if step % 50 == 0:
107             test_output, last_layer = cnn(test_x)
108             pred_y = torch.max(test_output, 1)[1].data.numpy()
109             accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
110             print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
111             if HAS_SK:
112                 # Visualization of trained flatten layer (T-SNE)
113                 tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
114                 plot_only = 500
115                 low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
116                 labels = test_y.numpy()[:plot_only]
117                 plot_with_labels(low_dim_embs, labels)
118 plt.ioff()
119 
120 # print 10 predictions from test data
121 test_output, _ = cnn(test_x[:10])
122 pred_y = torch.max(test_output, 1)[1].data.numpy()
123 print(pred_y, 'prediction number')
124 print(test_y[:10].numpy(), 'real number')

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!