scala spark-streaming整合kafka (spark 2.3 kafka 0.10)

柔情痞子 提交于 2020-01-25 00:54:34

 Maven组件如下:   

 

 

<dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>    <version>2.3.0</version></dependency>

 官网代码如下:

/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *    http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */// scalastyle:off printlnpackage org.apache.spark.examples.streamingimport org.apache.spark.SparkConfimport org.apache.spark.streaming._import org.apache.spark.streaming.kafka010._/** * Consumes messages from one or more topics in Kafka and does wordcount. * Usage: DirectKafkaWordCount <brokers> <topics> *   <brokers> is a list of one or more Kafka brokers *   <topics> is a list of one or more kafka topics to consume from * * Example: *    $ bin/run-example streaming.DirectKafkaWordCount broker1-host:port,broker2-host:port \ *    topic1,topic2 */object DirectKafkaWordCount {  def main(args: Array[String]) {    if (args.length < 2) {      System.err.println(s"""        |Usage: DirectKafkaWordCount <brokers> <topics>        |  <brokers> is a list of one or more Kafka brokers        |  <topics> is a list of one or more kafka topics to consume from        |        """.stripMargin)      System.exit(1)    }    StreamingExamples.setStreamingLogLevels()    val Array(brokers, topics) = args    // Create context with 2 second batch interval    val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")    val ssc = new StreamingContext(sparkConf, Seconds(2))    // Create direct kafka stream with brokers and topics    val topicsSet = topics.split(",").toSet    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)    val messages = KafkaUtils.createDirectStream[String, String](      ssc,      LocationStrategies.PreferConsistent,      ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))    // Get the lines, split them into words, count the words and print    val lines = messages.map(_.value)    val words = lines.flatMap(_.split(" "))    val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)    wordCounts.print()    // Start the computation    ssc.start()    ssc.awaitTermination()  }}// scalastyle:on println

 

运行以上代码出现如下错误等:

 Exception in thread "main" org.apache.kafka.common.config.ConfigException: Missing required configuration "bootstrap.servers" which has no default value.

  由错误可见,是因为没有设置kafka相关参数。

 把官网代码修改如下:

package cn.xdf.userprofile.streamimport org.apache.spark.SparkConfimport org.apache.spark.streaming.{Seconds, StreamingContext}import org.apache.spark.streaming.kafka010._import scala.collection.mutableobject DirectKafka {  def main(args: Array[String]): Unit = {    if (args.length < 2) {      System.err.println(        s"""           |Usage: DirectKafkaWordCount <brokers> <topics>           |  <brokers> is a list of one or more Kafka brokers           |  <topics> is a list of one or more kafka topics to consume from           |        """.stripMargin)      System.exit(1)    }      val Array(brokers,topics)=args      var conf = new SparkConf()        .setAppName("DirectKafka")          .setMaster("local[2]")      val ssc = new StreamingContext(conf, Seconds(2))      val topicsSet=topics.split(",").toSet      val kafkaParams=mutable.HashMap[String,String]()       //必须添加以下参数,否则会报错         kafkaParams.put("bootstrap.servers" ,brokers)          kafkaParams.put("group.id", "group1")         kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")         kafkaParams.put("value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer")      val messages=KafkaUtils.createDirectStream [String,String](        ssc,        LocationStrategies.PreferConsistent,        ConsumerStrategies.Subscribe[String,String](topicsSet,kafkaParams          )      )      // Get the lines, split them into words, count the words and print      val lines = messages.map(_.value)      val words = lines.flatMap(_.split(" "))      val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)      wordCounts.print()      // Start the computation      ssc.start()      ssc.awaitTermination()  }}

 运行过程如下:

 启动kafka

 

   bin/kafka-server-start ./etc/kafka/server.properties &

[2018-10-22 11:24:14,748] INFO [GroupCoordinator 0]: Stabilized group group1 generation 1 (__consumer_offsets-40) (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:24:14,761] INFO [GroupCoordinator 0]: Assignment received from leader for group group1 for generation 1 (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:24:14,779] INFO Updated PartitionLeaderEpoch. New: {epoch:0, offset:0}, Current: {epoch:-1, offset-1} for Partition: __consumer_offsets-40. Cache now contains 0 entries. (kafka.server.epoch.LeaderEpochFileCache)
[2018-10-22 11:28:19,010] INFO [GroupCoordinator 0]: Preparing to rebalance group group1 with old generation 1 (__consumer_offsets-40) (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:28:19,013] INFO [GroupCoordinator 0]: Group group1 with generation 2 is now empty (__consumer_offsets-40) (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:29:29,424] INFO [GroupMetadataManager brokerId=0] Removed 0 expired offsets in 11 milliseconds. (kafka.coordinator.group.GroupMetadataManager)
[2018-10-22 11:39:29,414] INFO [GroupMetadataManager brokerId=0] Removed 0 expired offsets in 1 milliseconds. (kafka.coordinator.group.GroupMetadataManager)
[2018-10-22 11:49:29,414] INFO [GroupMetadataManager brokerId=0] Removed 0 expired offsets in 1 milliseconds. (kafka.coordinator.group.GroupMetadataManager)

 

 

运行spark

 /usr/local/spark-2.3.0/bin/spark-submit --class cn.xdf.userprofile.stream.DirectKafka --master yarn --driver-memory 2g     --num-executors 1      --executor-memory 2g     --executor-cores 1  userprofile2.0.jar localhost:9092 test 

2018-10-22 11:28:16 INFO  DAGScheduler:54 - Submitting 1 missing tasks from ResultStage 483 (ShuffledRDD[604] at reduceByKey at DirectKafka.scala:46) (first 15 tasks are for partitions Vector(1))
2018-10-22 11:28:16 INFO  TaskSchedulerImpl:54 - Adding task set 483.0 with 1 tasks
2018-10-22 11:28:16 INFO  TaskSetManager:54 - Starting task 0.0 in stage 483.0 (TID 362, localhost, executor driver, partition 1, PROCESS_LOCAL, 7649 bytes)
2018-10-22 11:28:16 INFO  Executor:54 - Running task 0.0 in stage 483.0 (TID 362)
2018-10-22 11:28:16 INFO  ShuffleBlockFetcherIterator:54 - Getting 0 non-empty blocks out of 1 blocks
2018-10-22 11:28:16 INFO  ShuffleBlockFetcherIterator:54 - Started 0 remote fetches in 0 ms
2018-10-22 11:28:16 INFO  Executor:54 - Finished task 0.0 in stage 483.0 (TID 362). 1091 bytes result sent to driver
2018-10-22 11:28:16 INFO  TaskSetManager:54 - Finished task 0.0 in stage 483.0 (TID 362) in 4 ms on localhost (executor driver) (1/1)
2018-10-22 11:28:16 INFO  TaskSchedulerImpl:54 - Removed TaskSet 483.0, whose tasks have all completed, from pool 
2018-10-22 11:28:16 INFO  DAGScheduler:54 - ResultStage 483 (print at DirectKafka.scala:47) finished in 0.008 s
2018-10-22 11:28:16 INFO  DAGScheduler:54 - Job 241 finished: print at DirectKafka.scala:47, took 0.009993 s
-------------------------------------------
Time: 1540178896000 ms
-------------------------------------------

 

 启动生产者

[root@master kafka_2.11-1.0.0]# bin/kafka-console-producer.sh --topic test --broker-list localhost:9092

 

 

>  hello you

 

>  hello me

 

查看结果:

(hello,2)
(me,1)
(you,1)
2018-10-22 11:57:08 INFO  JobScheduler:54 - Finished job streaming job 1540180628000 ms.0 from job set of time 1540180628000 ms
2018-10-22 11:57:08 INFO  JobScheduler:54 - Total delay: 0.119 s for time 1540180628000 ms (execution: 0.072 s)
2018-10-22 11:57:08 INFO  ShuffledRDD:54 - Removing RDD 154 from persistence list
2018-10-22 11:57:08 INFO  MapPartitionsRDD:54 - Removing RDD 153 from persistence list
2018-10-22 11:57:08 INFO  BlockManager:54 - Removing RDD 153
2018-10-22 11:57:08 INFO  BlockManager:54 - Removing RDD 154
2018-10-22 11:57:08 INFO  MapPartitionsRDD:54 - Removing RDD 152 from persistence list
2018-10-22 11:57:08 INFO  BlockManager:54 - Removing RDD 152
2018-10-22 11:57:08 INFO  MapPartitionsRDD:54 - Removing RDD 151 from persistence list
2018-10-22 11:57:08 INFO  BlockManager:54 - Removing RDD 151
2018-10-22 11:57:08 INFO  KafkaRDD:54 - Removing RDD 150 from persistence list
2018-10-22 11:57:08 INFO  BlockManager:54 - Removing RDD 150

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!