问题
For refreshing some Java I tried to implement a quicksort (inplace) algorithm that can sort integer arrays. Following is the code I've got so far. You can call it by sort(a,0,a.length-1)
.
This code obviously fails (gets into an infinite loop) if both 'pointers' i,j
point each to an array entry that have the same values as the pivot. The pivot element v
is always the right most of the current partition (the one with the greatest index).
But I just cannot figure out how to avoid that, does anyone see a solution?
static void sort(int a[], int left, int right) {
if (right > left){
int i=left, j=right-1, tmp;
int v = a[right]; //pivot
int counter = 0;
do {
while(a[i]<v)i++;
while(j>0 && a[j]>v)j--;
if( i < j){
tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
} while(i < j);
tmp = a[right];
a[right] = a[i];
a[i] = tmp;
sort(a,left,i-1);
sort(a,i+1,right);
}
}
回答1:
This should work (will check for correctness in a bit, it works!):
EDIT: I previously made a mistake in error checking. I forgot to add 2 more conditions, here is the amended code.
public static void main (String[] args) throws java.lang.Exception
{
int b[] = {10, 9, 8, 7, 7, 7, 7, 3, 2, 1};
sort(b,0,b.length-1);
System.out.println(Arrays.toString(b));
}
static void sort(int a[], int left, int right) {
if (right > left){
int i=left, j=right, tmp;
//we want j to be right, not right-1 since that leaves out a number during recursion
int v = a[right]; //pivot
do {
while(a[i]<v)
i++;
while(a[j]>v)
//no need to check for 0, the right condition for recursion is the 2 if statements below.
j--;
if( i <= j){ //your code was i<j
tmp = a[i];
a[i] = a[j];
a[j] = tmp;
i++;
j--;
//we need to +/- both i,j, else it will stick at 0 or be same number
}
} while(i <= j); //your code was i<j, hence infinite loop on 0 case
//you had a swap here, I don't think it's needed.
//this is the 2 conditions we need to avoid infinite loops
// check if left < j, if it isn't, it's already sorted. Done
if(left < j) sort(a,left,j);
//check if i is less than right, if it isn't it's already sorted. Done
// here i is now the 'middle index', the slice for divide and conquer.
if(i < right) sort(a,i,right);
}
}
This Code in the IDEOne online compiler
Basically we make sure that we also swap the value if the value of i/j is the same as the pivot, and break out of the recursion.
Also there was a check in the pseudocode for the length, as if we have an array of just 1 item it's already sorted (we forgot the base case), I thought we needed that but since you pass in the indexes and the entire array, not the subarray, we just increment i and j so the algorithm won't stick at 0 (they're done sorting) but still keep sorting an array of 1. :)
Also, we had to add 2 conditions to check if the array is already sorted for the recursive calls. without it, we'll end up sorting an already sorted array forever, hence another infinite loop. see how I added checks for if left less than j and if i less than right. Also, at that point of passing in i and j, i is effectively the middle index we split for divide and conquer, and j would be the value right before the middle value.
The pseudocode for it is taken from RosettaCode:
function quicksort(array)
if length(array) > 1
pivot := select any element of array
left := first index of array
right := last index of array
while left ≤ right
while array[left] < pivot
left := left + 1
while array[right] > pivot
right := right - 1
if left ≤ right
swap array[left] with array[right]
left := left + 1
right := right - 1
quicksort(array from first index to right)
quicksort(array from left to last index)
Reference: This SO question
Also read this for a quick refresher, it's implemented differently with an oridnary while loop
This was fun :)
回答2:
When preforming a Quicksort I strongly suggest making a separate method for partitioning to make the code easier to follow (I'll show an example below). On top of this a good way of avoiding worst case run time is shuffling the array you're sorting prior to preforming the quick sort. Also I used the first index as the partitioning item instead of the last.
For example:
public static void sort (int[] a)
{
StdRandom.shuffle(a);
sort(a, 0, a.length - 1);
}
private static void sort(int[] a, int lo, int hi)
{
if (hi <= lo) return;
int j = partition(a, lo, hi) // the addition of a partitioning method
sort(a, lo, j-1);
sort(a, j+1, hi);
}
private static int partition(int[] a, int lo, int hi)
{
int i = lo, j = hi + 1, tmp = 0;
int v = a[lo];
while (true)
{
while (a[i++] < v) if (i == hi) break;
while (v < a[j--]) if (j == lo) break;
if (i >= j) break;
tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
tmp = a[lo];
a[lo] = a[j];
a[j] = temp;
return j;
}
On top of this if you want a really good example on how Quicksort works (as a refresher) see here.
回答3:
Heres some simple code I wrote that doesn't initialize to many pointers and gets the job done in a simple manner.
public int[] quickSort(int[] x ){
quickSortWorker(x,0,x.length-1);
return x;
}
private int[] quickSortWorker(int[] x, int lb, int ub){
if (lb>=ub) return x;
int pivotIndex = lb;
for (int i = lb+1 ; i<=ub; i++){
if (x[i]<=x[pivotIndex]){
swap(x,pivotIndex,i);
swap(x,i,pivotIndex+1);
pivotIndex++;
}
}
quickSortWorker(x,lb,pivotIndex-1);
quickSortWorker(x,pivotIndex+1,ub);
return x;
}
private void swap(int[] x,int a, int b){
int tmp = x[a];
x[a]=x[b];
x[b]=tmp;
}
来源:https://stackoverflow.com/questions/29609909/inplace-quicksort-in-java