How to speedup rnn training speed of tensorflow?

♀尐吖头ヾ 提交于 2019-12-21 02:33:34

问题


Now base tensorflow-char-rnn I start a word-rnn project to predict the next word. But I found that speed is too slow in my train data set. Here is my training details:

  • Training data size: 1 billion words
  • Vocabulary size: 0.75 millions
  • RNN model: lstm
  • RNN Layer: 2
  • Cell size: 200
  • Seq length: 20
  • Batch size: 40 (too big batch size will be cause OOM exception)

The machine details:

  • Amazon p2 instance
  • 1 core K80 GPU
  • 16G video memory
  • 4 core CPU
  • 60G memory

In my test, the time of training data 1 epoch is need 17 days! It’s is really too slow, and then I change the seq2seq.rnn_decoder to tf.nn.dynamic_rnn, but the time is still 17 days.

I want to find the too slow reason is caused by my code or it has always been so slow? Because I heard some rumors that Tensorflow rnn is slower than other DL Framework.

This is my model code:

class SeqModel():
def __init__(self, config, infer=False):
    self.args = config
    if infer:
        config.batch_size = 1
        config.seq_length = 1

    if config.model == 'rnn':
        cell_fn = rnn_cell.BasicRNNCell
    elif config.model == 'gru':
        cell_fn = rnn_cell.GRUCell
    elif config.model == 'lstm':
        cell_fn = rnn_cell.BasicLSTMCell
    else:
        raise Exception("model type not supported: {}".format(config.model))

    cell = cell_fn(config.hidden_size)

    self.cell = cell = rnn_cell.MultiRNNCell([cell] * config.num_layers)

    self.input_data = tf.placeholder(tf.int32, [config.batch_size, config.seq_length])
    self.targets = tf.placeholder(tf.int32, [config.batch_size, config.seq_length])
    self.initial_state = cell.zero_state(config.batch_size, tf.float32)

    with tf.variable_scope('rnnlm'):
        softmax_w = tf.get_variable("softmax_w", [config.hidden_size, config.vocab_size])
        softmax_b = tf.get_variable("softmax_b", [config.vocab_size])

        embedding = tf.get_variable("embedding", [config.vocab_size, config.hidden_size])
        inputs = tf.nn.embedding_lookup(embedding, self.input_data)


    outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=self.initial_state)

    # [seq_size * batch_size, hidden_size]
    output = tf.reshape(tf.concat(1, outputs), [-1, config.hidden_size])

    self.logits = tf.matmul(output, softmax_w) + softmax_b
    self.probs = tf.nn.softmax(self.logits)

    self.final_state = last_state


    loss = seq2seq.sequence_loss_by_example([self.logits],
                                            [tf.reshape(self.targets, [-1])],
                                            [tf.ones([config.batch_size * config.seq_length])],
                                            config.vocab_size)
    self.cost = tf.reduce_sum(loss) / config.batch_size / config.seq_length

    self.lr = tf.Variable(0.0, trainable=False)
    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                                      config.grad_clip)
    optimizer = tf.train.AdamOptimizer(self.lr)
    self.train_op = optimizer.apply_gradients(zip(grads, tvars))

Here is the GPU load during the training

Thanks very much.


回答1:


As you mentionned batch_size is really important to tune, it can lead to impressive speedup but check that your perplexity keeps relevant.

Monitoring your GPU activity can you give you hints about potential I/O bottleneck.

Most importantly, using sampled softmax instead of regular softmax is way faster. This would require you to use a [config.vocab_size, config.hidden_size] weight matrix instead of you [config.hidden_size, config.vocab_size]. This is definitely the way to go to my point of view.

Hope this helps.

pltrdy




回答2:


One other possible way you can speed up training, and the possible reason for your lack of utilisation of the GPU, is you are using placeholders. You should be using queues, if using Tensorflow < 1.2, and the tf.contrib.data module otherwise.

https://www.tensorflow.org/programmers_guide/threading_and_queues



来源:https://stackoverflow.com/questions/41096896/how-to-speedup-rnn-training-speed-of-tensorflow

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!