问题
I have data like this:
y = [0.001
0.0042222222
0.0074444444
0.0106666667
0.0138888889
0.0171111111
0.0203333333
0.0235555556
0.0267777778
0.03]
and
x = [3.52E-06
9.72E-05
0.0002822918
0.0004929136
0.0006759156
0.0008199029
0.0009092797
0.0009458332
0.0009749509
0.0009892005]
and I want y
to be a function of x
with y = a(0.01 − b*n^−cx).
What is the best and easiest computational approach to find the best combination of the coefficients a
, b
and c
that fit to the data?
Can I use Octave?
回答1:
Your function
y = a(0.01 − b*n−cx)
is in quite a specific form with 4 unknowns. In order to estimate your parameters from your list of observations I would recommend that you simplify it
y = β1 + β2β3x
This becomes our objective function and we can use ordinary least squares to solve for a good set of betas.
In default Matlab you could use fminsearch to find these β parameters (lets call it our parameter vector, β), and then you can use simple algebra to get back to your a
, b
, c
and n
(assuming you know either b
or n
upfront). In Octave I'm sure you can find an equivalent function, I would start by looking in here: http://octave.sourceforge.net/optim/index.html.
We're going to call fminsearch
, but we need to somehow pass in your observations (i.e. x
and y
) and we will do that using anonymous functions, so like example 2 from the docs:
beta = fminsearch(@(x,y) objfun(x,y,beta), beta0) %// beta0 are your initial guesses for beta, e.g. [0,0,0] or [1,1,1]. You need to pick these to be somewhat close to the correct values.
And we define our objective function like this:
function sse = objfun(x, y, beta)
f = beta(1) + beta(2).^(beta(3).*x);
err = sum((y-f).^2); %// this is the sum of square errors, often called SSE and it is what we are trying to minimise!
end
So putting it all together:
y= [0.001; 0.0042222222; 0.0074444444; 0.0106666667; 0.0138888889; 0.0171111111; 0.0203333333; 0.0235555556; 0.0267777778; 0.03];
x= [3.52E-06; 9.72E-05; 0.0002822918; 0.0004929136; 0.0006759156; 0.0008199029; 0.0009092797; 0.0009458332; 0.0009749509; 0.0009892005];
beta0 = [0,0,0];
beta = fminsearch(@(x,y) objfun(x,y,beta), beta0)
Now it's your job to solve for a
, b
and c
in terms of beta(1)
, beta(2)
and beta(3)
which you can do on paper.
来源:https://stackoverflow.com/questions/30238580/how-to-find-coefficients-for-a-possible-exponential-approximation