问题
assume that i have this time-series data:
A B
timestamp
1 1 2
2 1 2
3 1 1
4 0 1
5 1 0
6 0 1
7 1 0
8 1 1
i am looking for a re-sample value that would give me specific count of occurrences at least for some frequency
if I would use re sample for the data from 1 to 8 with 2S, i will get different maximum if i would start from 2 to 8 for the same window size (2S)
ds = series.resample( str(tries) +'S').sum()
for shift in range(1,100):
tries = 1
series = pd.read_csv("file.csv",index_col='timestamp') [shift:]
ds = series.resample( str(tries) +'S').sum()
while ( (ds.A.max + ds.B.max < 4) & (tries < len(ds))):
ds = series.resample( str(tries) +'S').sum()
tries = tries + 1
#other lines
i am looking for performance improvement as it takes prohibitively long to finish for large data
来源:https://stackoverflow.com/questions/45329115/shifting-with-re-sampling-in-time-series-data