问题
Could someone please share syntax to read/write bigquery table in a pipeline written in python for GCP Dataflow
回答1:
Run on Dataflow
First, construct a Pipeline
with the following options for it to run on GCP DataFlow:
import apache_beam as beam
options = {'project': <project>,
'runner': 'DataflowRunner',
'region': <region>,
'setup_file': <setup.py file>}
pipeline_options = beam.pipeline.PipelineOptions(flags=[], **options)
pipeline = beam.Pipeline(options = pipeline_options)
Read from BigQuery
Define a BigQuerySource
with your query and use beam.io.Read
to read data from BQ:
BQ_source = beam.io.BigQuerySource(query = <query>)
BQ_data = pipeline | beam.io.Read(BQ_source)
Write to BigQuery
There are two options to write to bigquery:
use a
BigQuerySink
andbeam.io.Write
:BQ_sink = beam.io.BigQuerySink(<table>, dataset=<dataset>, project=<project>) BQ_data | beam.io.Write(BQ_sink)
use
beam.io.WriteToBigQuery
:BQ_data | beam.io.WriteToBigQuery(<table>, dataset=<dataset>, project=<project>)
回答2:
Reading from Bigquery
rows = (p | 'ReadFromBQ' >> beam.io.Read(beam.io.BigQuerySource(query=QUERY, use_standard_sql=True))
writing to Bigquery
rows | 'writeToBQ' >> beam.io.Write(
beam.io.BigQuerySink('{}:{}.{}'.format(PROJECT, BQ_DATASET_ID, BQ_TEST), schema='CONVERSATION:STRING, LEAD_ID:INTEGER', create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
来源:https://stackoverflow.com/questions/48386148/how-to-read-bigquery-table-using-python-pipeline-code-in-gcp-dataflow