问题
I have this table as an input and I would like to add the name of the header to its corresponding cells before converting it to a dataframe
I am generating association rules after converting the table to a dataframe and each rule is not clear if it belongs to which antecedent/consequent.
Example for the first column of my desired table:
Age
Age = 45
Age = 30
Age = 45
Age = 80
. . and so on for the rest of the columns. What is the best way to access each column and rewrite them? And is there a better solution to reference my values after generating association rules other than adding the name of the header to each cell?
回答1:
Here is one way to add the column names to all cells:
df = pd.DataFrame({'age':[1,2],'sex':['M','F']})
df = df.applymap(str)
for c in df.columns:
df[c] = df[c].apply(lambda s: "{} = {}".format(c,s))
This yields:
age sex
0 age = 1 sex = M
1 age = 2 sex = F
来源:https://stackoverflow.com/questions/54902140/how-to-add-a-header-name-next-to-its-cell-value-in-python