问题
I have some 17,000 files in S3 that look like this:
{"hour": "00", "month": "07", "second": "00", "year": "1970", "timezone": "-00:00", "day": "12", "minute": "00"}
{"hour": "00", "month": "07", "second": "01", "year": "1970", "timezone": "-00:00", "day": "12", "minute": "00"}
{"hour": "00", "month": "07", "second": "02", "year": "1970", "timezone": "-00:00", "day": "12", "minute": "00"}
{"hour": "00", "month": "07", "second": "03", "year": "1970", "timezone": "-00:00", "day": "12", "minute": "00"}
{"hour": "00", "month": "07", "second": "04", "year": "1970", "timezone": "-00:00", "day": "12", "minute": "00"}
I have one file per day. Each file contains a record for each second. ∴ 86,000 records in a file. Each file has a file name like "YYYY-MM-DD".
Using boto3 I generate a list of the files in the bucket. Here I am selecting only 10 files using the prefix.
import boto3
s3_list = []
s3 = boto3.resource('s3')
my_bucket = s3.Bucket('time-waits-for-no-man')
for object in my_bucket.objects.filter(Prefix='1972-05-1):
s3_list.append(object.key)
This function returns a list of files(S3 keys). I then define a function to fetch a file and return the rows:
def FileRead(s3Key):
s3obj = boto3.resource('s3').Object(bucket_name='bucket', key=s3Key)
contents = s3obj.get()['Body'].read().decode('utf-8')
yield Row(**contents)
I then distribute this function using flatMap:
job = sc.parallelize(s3_list)
foo = job.flatMap(FileRead)
Problem
I'm not able to work out how to properly pump these rows into a Dataframe however.
>>> foo.toDF().show()
+--------------------+
| _1|
+--------------------+
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
|{"hour": "00", "m...|
+--------------------+
>>> foo.toDF().count()
10
Please could someone show me how to do this?
回答1:
You should probably use json
reader directly (spark.read.json
/ sqlContext.read.json
) but if you know the schema you can try parsing JSON string manually:
from pyspark.sql.types import StructField, StructType, StringType
from pyspark.sql import Row
import json
fields = ['day', 'hour', 'minute', 'month', 'second', 'timezone', 'year']
schema = StructType([
StructField(field, StringType(), True) for field in fields
])
def parse(s, fields):
try:
d = json.loads(s[0])
return [tuple(d.get(field) for field in fields)]
except:
return []
spark.createDataFrame(foo.flatMap(lambda s: parse(s, fields)), schema)
You can also use get_json_object
:
from pyspark.sql.functions import get_json_object
df.select([
get_json_object("value", "$.{0}".format(field)).alias(field)
for field in fields
])
回答2:
In the end I got it working with:
def FileRead(s3Key):
s3obj = boto3.resource('s3').Object(bucket_name='bucket', key=s3Key)
contents = s3obj.get()['Body'].read().decode()
result = []
meow = contents.split('\n')
index = 0
limit = 10
for item in meow:
index += 1
result.append(json.loads(item))
if index == limit:
return result
job = sc.parallelize(s3_list)
foo = job.flatMap(distributedJsonRead)
df = foo.toDF()
Thanks @user6910411 for the inspiration.
来源:https://stackoverflow.com/questions/39818368/convert-lines-of-json-in-rdd-to-dataframe-in-apache-spark