问题
What is the use/applicability of macro function without definition:
#ifndef __SYSCALL
#define __SYSCALL(a, b)
#endif
One can find this macro in Linux system in header file /usr/include/asm/msr.h
I also notice macro of following kind.
#define _M(x) x
And only reason to defined this kind of macro that I can think to make code uniform. like in #define SOMETHING (1 << 0). Is there any other hidden(better) use of this kind of macros?
An answer with example will be very helpful. Also can someone provide me a text/link to read about this.
回答1:
One of the most common case of a macro of this form:
#define _M(x) x
is to provide backwards compatibility for compilers that only supported the original K&R dialect of C, that predated the now-ubiquitous ANSI C dialect. In the original K&R dialect of the language, function arguments were not specified when declaring the function. In 1989, ANSI standardized the language and incorporated a number of improvements, including function prototypes that declared the number of type of arguments.
int f(int x, double y); /* ANSI C. K&R compilers would not accept this */
int f(); /* Function declared in the original K&R dialect */
While compilers that support the original K&R dialect of C are rare (or extinct) these days, a lot of software was written when both kinds of compilers needed to be supported, and macros provided an easy way to support both. There are still a lot of headers laying about that provide this backwards compatibility.
To provide backwards compatibility for K&R compilers, many header files have the following:
#if ANSI_PROTOTYPES
# define _P(x) x
#else
# define _P(x) ()
#endif
...
int f _P((int x, double y));
If the ANSI_PROTOTYPES
definition has been correctly set (either by the user or by some prior #ifdef
logic), then you get the desired behavior:
- If ANSI_PROTOTYPES is defined, the definition expands to
int f(int x, double y)
. - If ANSI_PROTOTYPES is not defined, the definition expands to
int f()
回答2:
This is often used with conditional expressions to disable a macro by causing it to be preprocessed to nothing. For example (simplified):
#ifdef DEBUG
#define ASSERT(x) if(!(x)) { abort(); }
#else
#define ASSERT(x) /* nothing */
#endif
回答3:
Just a follow-up to my question.
I got good answers. but I am also adding some more helpful example where macros without definition are useful, one can find it helpful in future:
(1): Why do I see THROW in a C library?
uses to share header file between C and C++. The macro name is _THROW(x)
#ifdef __cplusplus
#define __THROW(x) throw(x)
#else
#define __THROW(x)
#endif
(2) to eliminate warnings when a function parameter isn't used:
This use is for c++. In C it will cause an error too few arguments But in C++ it works with no error: (codepad linked)
#define UNUSED(x)
int value = 0;
int foo(int UNUSED(value))
{
return 42;
}
int main(){
foo(value);
}
(for this I added c++ tag in my question)
Additionally,
(3): The use of #define _M(x) x
is as follows, just to makes code line up uniformly:
/* Signed. */
# define INT8_C(c) c
# define INT16_C(c) c
# define INT32_C(c) c
# if __WORDSIZE == 64
# define INT64_C(c) c ## L
# else
# define INT64_C(c) c ## LL
# endif
the file is: /usr/include/stdint.h
回答4:
It means that code that uses that macro will conditionally preprocess away to nothing.
As simple examples, consider debug code, logging or assertions.
回答5:
This is probably a debug macro or an platform macro. For example lets say I have a debugger attached to INT3. I might have this when I'm debugging
#define debug() INT3()
Then to be safe I'll add this to production code (to make sure I took them all out)
#define debug()
This looks like something similar
It could be that in some cases on some systems this code needs to make a call -- for example on a certain CPU architecture or OS. But on your system it is just no-oped.
来源:https://stackoverflow.com/questions/15256090/macro-without-definition-in-c