Convert from an infix expression to postfix (C++) using Stacks

那年仲夏 提交于 2019-12-05 03:15:24

This is basically a comment to the answer from Yuushi.

  • The outer while(!stack.empty()) loop is wrong. just remove it. (keep the loop body ofc). At the end of the function, check that the stack is empty, else the expression had syntax errors.
  • As Yuushi already said the precedence function looks bogus. First you should give the parameters better names: one is the operator to the left, and the other to the right. (Right now you call it precedence(rightOp, leftOp)). Then you should document what the result means - right now you return true if a rOp b lOp c == (a rOp b) lOp c (yes, the operator order doesn't match what you call - "+" and "-" are not the same in both orders for example).
  • If you find a new operator you need to loop over the old operators on the stack, for example after reading a - b * c your output is a b c and the stack is [- *]. now you read a +, and you need to pop both operators, resulting in a b c * -. I.e., the input a - b * c + d should result in a b c * - d +

Update: appended complete solution (based on Yuushi's answer):

bool isOperator(char currentChar)
{
    switch (currentChar) {
    case '+':
    case '-':
    case '*':
    case '/':
    case '^':
    case '%':
        return true;
    default:
        return false;
    }
}

// returns whether a `lOp` b `rOp` c == (a `lOp` b) `rOp` c
bool precedence(char leftOperator, char rightOperator)
{
    if ( leftOperator == '^' ) {
        return true;
    } else if ( rightOperator == '^' ) {
        return false;
    } else if ( leftOperator == '*' || leftOperator == '/' || leftOperator == '%' ) {
        return true;
    } else if ( rightOperator == '*' || rightOperator == '/' || rightOperator == '%' ) {
        return false;
    }

    return true;
}

#include <stdexcept>
#include <cctype>
#include <sstream>
#include <stack>
std::string convertToPostfix(const std::string& infix)
{
    std::stringstream postfix; // Our return string
    std::stack<char> stack;
    stack.push('('); // Push a left parenthesis ‘(‘ onto the stack.

    for(std::size_t i = 0, l = infix.size(); i < l; ++i) {
        const char current = infix[i];

        if (isspace(current)) {
            // ignore
        }
        // If it's a digit or '.' or a letter ("variables"), add it to the output
        else if(isalnum(current) || '.' == current) {
            postfix << current;
        }

        else if('(' == current) {
            stack.push(current);
        }

        else if(isOperator(current)) {
            char rightOperator = current;
            while(!stack.empty() && isOperator(stack.top()) && precedence(stack.top(), rightOperator)) {
                postfix << ' ' << stack.top();
                stack.pop();
            }
            postfix << ' ';
            stack.push(rightOperator);
        }

        // We've hit a right parens
        else if(')' == current) {
            // While top of stack is not a left parens
            while(!stack.empty() && '(' != stack.top()) {
                postfix << ' ' << stack.top();
                stack.pop();
            }
            if (stack.empty()) {
                throw std::runtime_error("missing left paren");
            }
            // Discard the left paren
            stack.pop();
            postfix << ' ';
        } else {
            throw std::runtime_error("invalid input character");
        }
    }


    // Started with a left paren, now close it:
    // While top of stack is not a left paren
    while(!stack.empty() && '(' != stack.top()) {
        postfix << ' ' << stack.top();
        stack.pop();
    }
    if (stack.empty()) {
        throw std::runtime_error("missing left paren");
    }
    // Discard the left paren
    stack.pop();

    // all open parens should be closed now -> empty stack
    if (!stack.empty()) {
        throw std::runtime_error("missing right paren");
    }

    return postfix.str();
}

#include <iostream>
#include <string>
int main()
{
    for (;;) {
        if (!std::cout.good()) break;
        std::cout << "Enter the Arithmetic Expression: ";
        std::string infix;
        std::getline(std::cin, infix);
        if (infix.empty()) break;

        std::cout << "Postfix: '" << convertToPostfix(infix) << "'\n";
    }

    return 0;
}

So there are a number of problems with your code. I'll post what (should be) a corrected solution, which has copious comments to explain what's happening and where you've made mistakes. A few things up front:

  1. I'll use std::string instead of char * because it makes things much cleaner, and honestly, you should be using it in C++ unless you have a very good reason not to (such as interoperability with a C library). This version also returns a string instead of taking a char * as a parameter.

  2. I'm using the stack from the standard library, <stack>, which is slightly different to your home-rolled one. top() shows you the next element without removing it from the stack, and pop() returns void, but removes the top element from the stack.

  3. It's a free function, not part of a class, but that should be easy to modify - it's simply easier for me to test this way.

  4. I'm not convinced your operator precedence tables are correct, however, I'll let you double check that.


#include <stack>
#include <cctype>
#include <iostream>

std::string convertToPostfix(std::string& infix)
{
    std::string postfix; //Our return string
    std::stack<char> stack;
    stack.push('('); //Push a left parenthesis ‘(‘ onto the stack.
    infix.push_back(')');

    //We know we need to process every element in the string,
    //so let's do that instead of having to worry about
    //hardcoded numbers and i, j indecies
    for(std::size_t i = 0; i < infix.size(); ++i) {

        //If it's a digit, add it to the output
        //Also, if it's a space, add it to the output 
        //this makes it look a bit nicer
        if(isdigit(infix[i]) || isspace(infix[i])) {
            postfix.push_back(infix[i]);
        }

        //Already iterating over i, so 
        //don't need to worry about i++
        //Also, these options are all mutually exclusive,
        //so they should be else if instead of if.
        //(Mutually exclusive in that if something is a digit,
        //it can't be a parens or an operator or anything else).
        else if(infix[i] == '(') {
            stack.push(infix[i]);
        }

        //This is farily similar to your code, but cleaned up. 
        //With strings we can simply push_back instead of having
        //to worry about incrementing some counter.
        else if(isOperator(infix[i]))
        {
            char operator1 = infix[i];
            if(isOperator(stack.top())) {
                while(!stack.empty() && precedence(operator1,stack.top())) {
                    postfix.push_back(stack.top());
                    stack.pop();
                }
            }
            //This shouldn't be in an else - we always want to push the
            //operator onto the stack
            stack.push(operator1);
        }    

        //We've hit a right parens - Why you had a for loop
        //here originally I don't know
        else if(infix[i] == ')') {
            //While top of stack is not a right parens
            while(stack.top() != '(') {
            //Insert into postfix and pop the stack
                postfix.push_back(stack.top());
                stack.pop();
            }
            // Discard the left parens - you'd forgotten to do this
            stack.pop(); 
        }
    }

    //Remove any remaining operators from the stack
    while(!stack.empty()) {
        postfix.push_back(stack.top());
        stack.pop();
    }
}

Here's mine using C with multiple digits evaluation.

#include <stdio.h>
#include <math.h>
#define MAX 50
void push(char[],char);
void in_push(double[], double);
int pop();
int prec(char);
double eval(char[],int,double[]);
int top = 0;
void main() {
double eval_stack[MAX];
int op_count=0;
char stack[MAX], exps[MAX], symbols[MAX];
int i=0,j=0,len,check;
while((symbols[i]=getchar())!='\n') {
if(symbols[i]!=' ' || symbols[i]!='\t') {
if(symbols[i]=='+' || symbols[i]=='-' || symbols[i]=='/' || symbols[i]=='*' || symbols[i]=='^')
op_count++;
i++;
}
}
symbols[i]='#';
symbols[++i]='\0';
len = strlen(symbols);
stack[top] = '#';
for(i=0; i<=len; i++) {
if(symbols[i]>='a'  && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
}
switch(symbols[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
//if(symbols[i]>='a'  && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
break;
case '+': case '-': case '*': case '/': case '^':
exps[j++] = ' ';
while(prec(symbols[i]) <= prec(stack[top])) {

             exps[j] = stack[top];
             pop();
             //printf("\n\t\t%d\t\t%d\n", top,j);
                j++;


}
if(prec(symbols[i]) > prec(stack[top])) {
push(stack,symbols[i]);
}
break;
case '(':
push(stack,symbols[i]);
break;
case ')':
while(stack[top]!='(') {
      exps[j] = stack[top];
       pop();
      j++;

}
pop();
break;
case '#':
exps[j++] = ' ';
while(stack[top]!='#') {
      exps[j] = stack[top];
       pop();
       j++;

}
pop();
break;
}
}
exps[j]='\0';
printf("Postfix: %s", exps);
for(i=0; i<j; i++)
if(exps[i]=='a')
check = 1;
if(check!=1)
printf("\nSolution: %.1f", eval(exps,j,eval_stack));
}

double eval(char exps[],int exps_len,double eval_stack[]) {
    int i; int len=exps_len,temp;
    double in_temp[MAX],t;
    int count,power,j,in_count;
    count=power=j=t=in_count=0;
    double result;
for(i=0; i<len; i++) {
switch(exps[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
in_temp[i] = exps[i]-'0';
j=i+1;
while(exps[j]>='0' && exps[j]<='9') {
in_temp[j] = exps[j]-'0';
j++; // 2
}
count = i; // 3
while(in_temp[count]<='0' && in_temp[count]<='9') {
power = (j-count)-1;
t = t + in_temp[count]*(pow(10,power));
power--;
count++;
}
in_push(eval_stack,t);
i=j-1;
t=0;
break;
case '+':
temp = pop();
pop();
result = eval_stack[temp] + eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '-':
temp = pop();
pop();
result = eval_stack[temp] - eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '*':
temp = pop();
pop();
result = eval_stack[temp] * eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '/':
temp = pop();
pop();
result = eval_stack[temp] / eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '^':
temp = pop();
pop();
result = pow(eval_stack[temp],eval_stack[temp+1]);
in_push(eval_stack,result);
break;
}
}
return eval_stack[top];
}
int prec(char a) {
if(a=='^')
return 3;
else if(a=='*' || a=='/' || a=='%')
return 2;
else if(a=='+' || a=='-')
return 1;
else if(a=='(')
return 0;
else
return -1;
}

void push(char stack[], char ele) {
    if(top>=MAX) {
    printf("\nStack Overflow");
    exit(1);
    }
stack[++top] = ele;
}
void in_push(double stack[], double ele) {
    if(top>=MAX) {
    printf("\nStack Overflow");
    exit(1);
    }
stack[++top] = ele;
}
int pop() {
    if(top<0) {
    printf("\nStack Underflow");
    exit(1);
    }

top = top - 1;
return top;
}

C++ implementation is given below:


  void infix2postfix(string s)
   {
     stack<char>st;
     for(int i=0; i<s.length(); i++)
     {
        if(isdigit(s[i]) || isalpha(s[i]))  cout<<s[i];
        else if( s[i]==')' )
        {
           while(st.top()!='(')
           {
                cout<<st.top();
                st.pop();
           }
          st.pop();
        }

        else st.push(s[i]);
      }
   }

Operator Precedence is the problem in this case. The correct operator precedence in descending order is:

mul, div, mod   << *, /, % >>
add, sub        << +, - >>
XOR             << ^ >>

In the question above consider the precedence function

bool ArithmeticExpression::precedence(char operator1, char operator2)
{
    if ( operator1 == '^' )
       return true;
    else if ( operator2 == '^' )
       return false;
    else if ( operator1 == '*' || operator1 == '/' )
       return true;
    else if ( operator1 == '+' || operator1 == '-' )
       if ( operator2 == '*' || operator2 == '/' )
          return false;
       else
          return true;
    return false;
}

for each value in operator1 corresponding value of operator2 should be checked for precedence, according to OPERATOR PRECEDENCE TABLE mentioned above. Do not return any value without proper comparison.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!