python xgboost continue training on existing model

巧了我就是萌 提交于 2019-12-04 12:06:49

You don't even have to load the model from the disk and retrain.

All you need to do is the same xgb.train command with additional parameter: xgb_model= (either xgboost model full path name you've saved like in the question or a Booster object).

Example:

bst = xgb.train(param0, dtrain2, num_round, evals=[(dtrain, "training")], xgb_model='xgbmodel')

Good luck!

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!