HGOI 20191101am 题解

时间秒杀一切 提交于 2019-12-03 04:21:49

  Problem A awesome

  给出一个序列$A_i$,任取序列中三个数组成三元组$(a_i , a_j , a_k)$。

  输出本质不同的且$abc \equiv 1 (mod \@ P)$且满足$a \leq b \leq c$的三元组$(a,b,c)$的组数。

  对于$100\%$的数据满足$n \leq 2333 , P \in Prime$

Soltuion : 

  本题显然会卡常数,并且出了非常暧昧的数据范围。

  设$n$不去重前的数据规模,而$m$是去重前的数据规模。

  我们可以使用$O(n)$的暴力处理三元组中三个数都相同的情况。

  我们可以使用$O(n^2)$暴力处理三元组中两个数的情况。

  我们可以使用$O(n^2 log_2 n)$暴力处理三元组中所有数都不同的情况。

  我们将数组中每个数以其模$P$的余数为键值插入到hash表中。

  然后对于去重后的数组$O(m^2)$枚举两个不同的数,然后通过逆元从hash表中取出对应的数集即可。

  可以通过一个$lower_bound$来计数。

  时间复杂度为$O(n^2 log_2 n)$。

 

  

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!