美团BERT的探索和实践
他山之石,可以攻玉。美团点评NLP团队一直紧跟业界前沿技术,开展了基于美团点评业务数据的预训练研究工作,训练了更适配美团点评业务场景的MT-BERT模型,通过微调将MT-BERT落地到多个业务场景中,并取得了不错的业务效果。 背景 2018年,自然语言处理(Natural Language Processing,NLP)领域最激动人心的进展莫过于预训练语言模型,包括基于RNN的ELMo[1]和ULMFiT[2],基于Transformer[3]的OpenAI GPT[4]及Google BERT[5]等。下图1回顾了近年来预训练语言模型的发展史以及最新的进展。预训练语言模型的成功,证明了我们可以从海量的无标注文本中学到潜在的语义信息,而无需为每一项下游NLP任务单独标注大量训练数据。此外,预训练语言模型的成功也开创了NLP研究的新范式[6],即首先使用大量无监督语料进行语言模型预训练(Pre-training),再使用少量标注语料进行微调(Fine-tuning)来完成具体NLP任务(分类、序列标注、句间关系判断和机器阅读理解等)。 图1 NLP Pre-training and Fine-tuning新范式及相关扩展工作 所谓的“预训练”,其实并不是什么新概念,这种“Pre-training and Fine-tuning”的方法在图像领域早有应用。2009年,邓嘉