大牛的《深度学习》笔记,Deep Learning速成教程
本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之间的关系。 深度学习 , 即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支。从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别、图像分类、文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输出得到最终结果的一种新模式。那么,深度学习有多深?学了究竟有几分?本文将带你领略深度学习高端范儿背后的方法与过程。 一、概述 二、背景 三、人脑视觉机理 四、关于特征 4.1、特征表示的粒度 4.2、初级(浅层)特征表示 4.3、结构性特征表示 4.4、需要有多少个特征? 五、Deep Learning的基本思想 六、浅层学习(Shallow Learning)和深度学习(Deep Learning) 七、Deep learning与Neural Network 八、Deep learning训练过程 8.1、传统神经网络的训练方法 8.2、deep learning训练过程 九、Deep Learning的常用模型或者方法 9.1、AutoEncoder自动编码器 9.2、Sparse Coding稀疏编码 9