特征向量

Gram格拉姆矩阵在风格迁移中的应用

岁酱吖の 提交于 2020-11-29 16:08:28
Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向量两两内积得到的,先说一下向量内积是做什么的。 向量的内积,也叫向量的点乘,对两个向量执行内积运算,就是对这两个向量对应位一一相乘之后求和的操作,内积的结果是一个标量。例如对于向量a和向量b: a和b的内积公式为: 两个向量的内积有什么用呢? 一个重要的应用就是可以根据内积判断向量a和向量b之间的夹角和方向关系(详细推导可参见: https://blog.csdn.net/dcrmg/article/details/52416832 ),具体来说: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交,相互垂直 a·b<0 方向基本相反,夹角在90°到180°之间 简单来说就是内积可以反映出两个向量之间的某种关系或联系 。Gram矩阵是两两向量的内积组成的,所以 Gram矩阵可以反映出该组向量中各个向量之间的某种关系 。 风格迁移中的Gram矩阵 深度学习中经典的风格迁移大体流程是: 1. 准备基准图像和风格图像 2. 使用深层网络分别提取基准图像(加白噪声)和风格图像的特征向量(或者说是特征图feature map) 3. 分别计算两个图像的特征向量的Gram矩阵

3D视觉:一张图像如何看出3D效果?

被刻印的时光 ゝ 提交于 2020-11-28 08:40:35
不同于人类,计算机「看待」世界有自己的方式。为了达到类似人类的视觉水平,各种算法层出不穷,本篇就来窥探其冰山一角。 机器之心原创,作者:陈萍。 我们生活的世界是一个三维物理空间。直观而言,三维视觉系统有助于机器更好地感知和理解真实的三维场景。三维视觉作为计算机视觉的一个比较重要的研究方向,在过去几十年间得到了扎实和系统地发展,形成了一套完整的理论体系。近年来,随着三维成像技术如激光雷达、TOF 相机及结构光等的快速发展,三维视觉研究再次成为研究热点。 在 上一篇文章 中,我们对 3D 视觉基础相关内容进行了概括性总结,本文我们将进行比较深层次的介绍,主要涉及 3D 视觉算法及其应用领域。 3D 目标检测多模态融合算法 基于视觉的目标检测是环境感知系统的重要组成,也是计算机视觉、机器人研究等相关领域的研究热点。三维目标检测是在二维目标检测的基础上,增加目标尺寸、深度、姿态等信息的估计。相比于二维目标检测,三维目标检测在准确性、实时性等方面仍有较大的提升空间。 在目标检测领域,2D 目标检测方面发展迅速,出现了以 R-CNN、Fast RCNN、Mask RCNN 为代表的 two-stage 网络架构,以及以 YOLO、SSD 为代表的 one-stage 网络架构。然而由于 2D 图像缺乏深度、尺寸等物理世界参数信息,在实际应用中存在一定局限性,往往需要结合激光雷达

kalman滤波(二)---扩展kalman滤波[EKF]的推导

Deadly 提交于 2020-11-28 05:26:18
一.状态估计的解释 我们知道每个方程都受噪声的影响,这里把位姿x和路标y看成服从某种概率分布的随机变量。因此我们关心的问题就变成了:当我们已知某些运动数据u和观测数据z时,如何确定状态量x,y的分布? 比较常见且合理的情况下,我们假设状态量和噪声项服从高斯分布---这意味着在程序中只需存储它们的均值和协方差即可。 均值可看作是对变量最优值的估计,而协方差矩阵度量了它的不确定性。 如果认为k时刻状态只与k-1时刻状态有关,而与再之前无关,我们就会得到以卡尔曼滤波(EKF)为代表的滤波器方法,在滤波方法综合那个,我们会将某时刻的状态估计,推导到下一时刻; 另一种方法考虑k时刻状态与之前所有状态的关系,将得到以非线性优化为主体的优化框架。目前SLAM的主流是非线性优化方法。 二.EKF [1] 卡尔曼滤波 -- 从推导到应用(一) 卡尔曼滤波 -- 从应用(一) 到 (二) 高斯分布,又称为正态分布: 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为 钟形曲线 。若 随机变量 X服从一个 数学期望 为μ、 方差 为σ^2的正态分布,记为N(μ,σ^2)。其 概率密度函数 为正态分布的 期望值 μ决定了其位置,其 标准差 σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是 标准正态分布 。 1.协方差的几何意义 样本方差的无偏估计可以通过以下方式获得

机器学习知识框架

蹲街弑〆低调 提交于 2020-11-26 13:44:34
参数 参数分为两种:可学习得到的参数,和超参数。 机器学习可以归结为学习一个映射函数f : x → y,将输入变量 x映射为输出变量y。一般我们可以假设映射函数为y = f(x, θ)。其中θ 即为函 数的参数。参数可以通过学习算法进行学习。 除了可学习的参数之外,还有一类参数是用来定义模型结构或训练策略的, 这类参数叫做超参数(Hyper-Parameter)。超参数和可学习的参数不同,通常是按照人的经验设定,或者通过网格搜索(Grid Search)对一组超参数组合进行不断试错调整。 常见的超参数:聚类算法中的类别个数、梯度下降法的步长、正则项的系数、神经网络的层数、支持向量机中的核函数等。 特征学习 特征学习分成两种:特征选择和特征抽取。 特征选择(Feature Selection) 是选取原始特征集合的一个有效子集,使得基于这个特征子集训练出来的模型准确率最高。简单地说,特征选择就是保留有用特征,移除冗余或无关的特征。 最暴力的做法是测试每个特征子集,看机器学习模型哪个 子集上的准确率最高,但这种方式效率太低。常用的方法是采样贪心的策略,由空集合开始,每一轮添加该轮最优的特征;或者从原始特征集合开始,每次删 除最无用的特征。 特征抽取(Feature Extraction)是构造一个新的特征空间,并将原始特征 投影在新的空间中。以线性投影为例,原始特征向量x ∈ R d

PCA(主成分分析)

吃可爱长大的小学妹 提交于 2020-11-21 05:57:30
  PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。   当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导。希望读者在看完这篇文章后能更好的明白PCA的工作原理。 1. 数据的向量表示及降维问题   一般情况下,在数据挖掘和机器学习中,数据被表示为向量。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下: (日期, 浏览量, 访客数, 下单数, 成交数, 成交金额)      其中“日期”是一个记录标志而非度量值,而数据挖掘关心的大多是度量值,因此如果我们忽略日期这个字段后,我们得到一组记录,每条记录可以被表示为一个五维向量,其中一条看起来大约是这个样子:      注意这里我用了转置,因为习惯上使用列向量表示一条记录(后面会看到原因),本文后面也会遵循这个准则。不过为了方便有时我会省略转置符号,但我们说到向量默认都是指列向量。  

【DL&ML】深度学习调参有哪些技巧?

人走茶凉 提交于 2020-11-17 22:41:11
深度学习调参有哪些技巧? 编辑:Amusi | 来源:知乎 https://www.zhihu.com/question/25097993 目录 一、为什么要学习调参? 二、调参技巧 1. 评价指标: 2. 损失函数: 3. 激活函数选择: 4. 学习率设定: 5. 优化器选择: 6. batch_size 7. 防止过拟合: 8. 残差块与BN层: 9. 数据预处理【对输入】 10.参数随机初始化【对参数】 11.自动调参方法: 12. 过程、结果可视化 13. 关于卷积神经网络的技巧 三、心态类: 深度学习的效果很大程度上取决于参数调节的好坏,那么怎么才能最快最好的调到合适的参数呢?求解 一、为什么要学习调参? 相信很多刚开始接触深度学习朋友,会感觉深度学习调参就像玄学一般,有时候参数调的好,模型会快速收敛,参数没调好,可能迭代几次loss值就直接变成Nan了。 记得刚开始研究深度学习时,做过两个小例子。 一个是用tensorflow构建了一个十分简单的只有一个输入层和一个softmax输出层的Mnist手写识别网络,第一次我对权重矩阵W和偏置b采用的是正态分布初始化,一共迭代了20个epoch,当迭代完第一个epoch时,预测的准确度只有10%左右(和随机猜一样,Mnist是一个十分类问题),当迭代完二十个epoch,精度也仅仅达到了60%的样子

NeurIPS 2020 | 清华大学提出:通用、高效的神经网络自适应推理框架

邮差的信 提交于 2020-11-17 03:45:34
来源:人工智能AI技术 本文 约3400字 ,建议阅读 7 分钟 本文介绍我们被NeurIPS 2020会议录用的一篇文章。 本文主要介绍我们被NeurIPS 2020会议录用的一篇文章:Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification。 论文: https://arxiv.org/abs/2010.05300 代码和预训练模型已经在Github上面放出: https://github.com/blackfeather-wang/GFNet-Pytorch 这项工作提出了一个通用于 绝大多数CNN 的自适应推理框架,其效果比较明显,在同等精度的条件下, 将MobileNetV3的平均推理速度加快了30%,将ResNet/DenseNet加速了3倍以上,且在iPhone XS Max上的实际测速和理论结果高度吻合。 此外,它的计算开销可以简单地 动态在线调整,无需额外训练。 (太长不看版)下面一张图可以概括我们做的事情:将图像识别建模为序列决策过程,先将缩略图输入神经网络(Glance),再不断选择最关键的图像区域进行处理(Focus,利用强化学习实现),直至网络产生一个足够可信的预测结果时停止;对于简单和困难的样本分配不同的计算资源,以提升整体效率。

机器学习数学基础-线性代数

无人久伴 提交于 2020-11-15 06:51:51
前言 AI(人工智能)现在火的一塌糊涂,其实在AI领域,机器学习已广泛应用在搜索引擎、自然语言处理、计算机视觉、生物特征识别、医学诊断、证券市场分析等领域,并且机器学习已经是各大互联网公司的基础设施,不再是一个新鲜的技术。但当你真的开始学习机器学习的时候,就会发现上手门槛其实还挺高的,这主要是因为机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。 本文主要介绍一下机器学习涉及到的一些最常用的的数学知识,方便大家在学习机器学习的时候,能扫除一些基础障碍。 标量(scalar) 标量是一个单独的数,一般用普通小写字母或希腊字母表示,如 等。 向量(vector)相关 向量的定义 把数排成一列就是向量,比如: 向量一般用粗体小写字母或粗体希腊字母表示,如 等(有时候也会用箭头来标识,如 ),其元素记作 。 向量默认为列向量,行向量需要用列向量的转置表示,例如 等。 物理专业视角:向量是空间中的箭头,决定一个向量的是它的长度和方向 计算机专业视角:向量是有序的数字列表 数学专业视角:向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘是有意义的即可 运算规则 向量的加法和数量乘法定义: 加法 相同维数的向量之间的加法为: 数量乘法 任意的常数 和向量的乘法为: 在给定数 及向量 的情况下 张成空间 张成空间是向量 和

机器学习的数学基础-(二、线性代数)

荒凉一梦 提交于 2020-11-15 06:12:26
二、线性代数 行列式 1.行列式按行(列)展开定理 (1) 设 ,则: 或 ,即 , 其中: (2) 设 为 阶方阵,则 ,但 不一定成立。 (3) , 为 阶方阵。 (4) 设 为 阶方阵, (若 可逆), (5) , 为方阵,但 。 (6) 范德蒙行列式 设 是 阶方阵, 是 的 个特征值,则 矩阵 矩阵: 个数 排成 行 列的表格 称为矩阵,简记为 ,或者 。若 ,则称 是 阶矩阵或 阶方阵。 矩阵的线性运算 1.矩阵的加法 设 , 是两个 矩阵,则 矩阵 称为矩阵 与 的和,记为 。 2.矩阵的数乘 设 是 矩阵, 是一个常数,则 矩阵 称为数 与矩阵 的数乘,记为 。 3.矩阵的乘法 设 是 矩阵, 是 矩阵,那么 矩阵 , 其中 称为 的乘积,记为 。 4. 、 、 三者之间的关系 (1) (2) 但 不一定成立。 (3) , 但 不一定成立。 (4) 5.有关 的结论 (1) (2) (3) 若 可逆,则 (4) 若 为 阶方阵,则: 6.有关 的结论 可逆 可以表示为初等矩阵的乘积; 。 7.有关矩阵秩的结论 (1) 秩 =行秩=列秩; (2) (3) (4) (5) 初等变换不改变矩阵的秩 (6) ,特别若 则: (7) 若 存在 若 存在, 。 (8) 只有零解 8.分块求逆公式 ; ; ; 这里 , 均为可逆方阵。 向量 1.有关向量组的线性表示 (1)

Python机器学习笔记:朴素贝叶斯算法

↘锁芯ラ 提交于 2020-11-14 03:58:51
  朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布。但是朴素贝叶斯却是生成方法,该算法原理简单,也易于实现。 1,基本概念   朴素贝叶斯 :贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类时贝叶斯分类中最简单,也是最常见的一种分类方法。   贝叶斯公式 : (X:特征向量, Y:类别)   先验概率P(X) :先验概率是指根据以往经验和分析得到的概率。   后验概率P(Y|X) :事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,后验分布P(Y|X)表示事件X已经发生的前提下,事件Y发生的概率,叫做事件X发生下事件Y的条件概率。   后验概率P(X|Y) :在已知Y发生后X的条件概率,也由于知道Y的取值而被称为X的后验概率。   朴素 :朴素贝叶斯算法是假设各个特征之间相互独立,也是朴素这词的意思那么贝叶斯公式中的P(X|Y)可写成:   朴素贝叶斯公式 : 2,贝叶斯算法简介   NaiveBayes算法,又称朴素贝叶斯算法。朴素:特征条件独立;贝叶斯