数据压缩·课前任务二(PCA)
要求:主成分分析:步骤、应用及代码实现 目的: 降维。 简介: 通俗易懂见详解:https://www.matongxue.com/madocs/1025.html 这里举一个例子帮助理解。 首先我们观察一下下面这个矩阵: 会发现,这个矩阵的第一列,第二列,第四列这三个列向量在空间中的指向是没有变的,仅仅只是缩放了相应的倍数而已,所以这个看起来是四维度矩阵其实是个二维矩阵。看到这你可能开始迷惑了,为啥是二维,这个矩阵不是有四个列向量吗?鲁迅曾经说过:不要被表象迷惑了双眼。好吧,不管这句话是不是鲁迅说的,但总之,仔细想想我们就会发现,第一、二、四个列向量它们都处在同一条直线上,用线性代数的语言来说,就是这三个列向量张成的空间是一条直线,那在加上第三个列向量所张成的直线,那这个矩阵不就只代表了一个二维平面嘛!所以说,这个四维的矩阵其实只是一个二维矩阵而已! 到这里,我们就会顺理成章产生这样的想法:既然是一个二维的矩阵,干嘛不用二维的形式呢?所以自然地我们就会想到要找一个办法让这个矩阵降维,让它把冗余数据给去掉,只留下它的主成分。我们可以把上面的矩阵看成是一个四维空间中的二维平面,既然是二维平面,就应该在二维平面上重建一个坐标系,这样就可以把原来的列向量都表示出来,也就是说,这四个列向量在空间中没有变,只是我们换了一个参考系,表征它们的值也就变了,原来需要四个数(x,y,z,r