Using Principal Components Analysis (PCA) on binary data
I am using PCA on binary attributes to reduce the dimensions (attributes) of my problem. The initial dimensions were 592 and after PCA the dimensions are 497. I used PCA before, on numeric attributes in an other problem and it managed to reduce the dimensions in a greater extent (the half of the initial dimensions). I believe that binary attributes decrease the power of PCA, but i do not know why. Could you please explain me why PCA does not work as good as in numeric data. Thank you. The principal components of 0/1 data can fall off slowly or rapidly, and the PCs of continuous data too — it