神经网络反向传播算法
反向传播算法是求代价函数小时参数θ的一种算法。 以监督学习为例,假设我们有训练样本集 ,那么神经网络算法能够提供一种复杂且非线性的假设模型 ,它具有参数 ,可以以此参数来拟合我们的数据。 为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示: 这个“神经元”是一个以 及截距 为输入值的运算单元,其输出为 ,其中函数 被称为“激活函数”。在本教程中,我们选用sigmoid函数作为激活函数 可以看出,这个单一“神经元”的输入-输出映射关系其实就是一个逻辑回归(logistic regression)。 虽然本系列教程采用sigmoid函数,但你也可以选择双曲正切函数(tanh): 以下分别是sigmoid及tanh的函数图像 函数是sigmoid函数的一种变体,它的取值范围为 ,而不是sigmoid函数的 。 注意,与其它地方(包括OpenClassroom公开课以及斯坦福大学CS229课程)不同的是,这里我们不再令 。取而代之,我们用单独的参数 来表示截距。 最后要说明的是,有一个等式我们以后会经常用到:如果选择 ,也就是sigmoid函数,那么它的导数就是 (如果选择tanh函数,那它的导数就是 ,你可以根据sigmoid(或tanh)函数的定义自行推导这个等式。 神经网络模型 所谓神经网络就是将许多个单一“神经元