背景:跟上一讲一样,识别手写数字,给一组数据集ex4data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),5000*1的矩阵y(表示每个样例所代表的数据)。现在让你拟合出一个模型,使得这个模型能很好的预测其它手写的数字。
(注意:我们用10代表0(矩阵y也是这样),因为Octave的矩阵没有0行)
一:神经网络( Neural Networks)
神经网络脚本ex4.m:

%% Machine Learning Online Class - Exercise 4 Neural Network Learning % Instructions % ------------ % % This file contains code that helps you get started on the % linear exercise. You will need to complete the following functions % in this exericse: % % sigmoidGradient.m % randInitializeWeights.m % nnCostFunction.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% Setup the parameters you will use for this exercise input_layer_size = 400; % 20x20 Input Images of Digits hidden_layer_size = 25; % 25 hidden units num_labels = 10; % 10 labels, from 1 to 10 % (note that we have mapped "0" to label 10) %% =========== Part 1: Loading and Visualizing Data ============= % We start the exercise by first loading and visualizing the dataset. % You will be working with a dataset that contains handwritten digits. % % Load Training Data fprintf('Loading and Visualizing Data ...\n') load('ex4data1.mat'); m = size(X, 1); % Randomly select 100 data points to display sel = randperm(size(X, 1)); sel = sel(1:100); displayData(X(sel, :)); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================ Part 2: Loading Parameters ================ % In this part of the exercise, we load some pre-initialized % neural network parameters. fprintf('\nLoading Saved Neural Network Parameters ...\n') % Load the weights into variables Theta1(25x401) and Theta2(10x26) load('ex4weights.mat'); % Unroll parameters nn_params = [Theta1(:) ; Theta2(:)]; %% ================ Part 3: Compute Cost (Feedforward) ================ % To the neural network, you should first start by implementing the % feedforward part of the neural network that returns the cost only. You % should complete the code in nnCostFunction.m to return cost. After % implementing the feedforward to compute the cost, you can verify that % your implementation is correct by verifying that you get the same cost % as us for the fixed debugging parameters. % % We suggest implementing the feedforward cost *without* regularization % first so that it will be easier for you to debug. Later, in part 4, you % will get to implement the regularized cost. % fprintf('\nFeedforward Using Neural Network ...\n') % Weight regularization parameter (we set this to 0 here). lambda = 0; J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ... num_labels, X, y, lambda); fprintf(['Cost at parameters (loaded from ex4weights): %f '... '\n(this value should be about 0.287629)\n'], J); fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% =============== Part 4: Implement Regularization =============== % Once your cost function implementation is correct, you should now % continue to implement the regularization with the cost. % fprintf('\nChecking Cost Function (w/ Regularization) ... \n') % Weight regularization parameter (we set this to 1 here). lambda = 1; J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ... num_labels, X, y, lambda); fprintf(['Cost at parameters (loaded from ex4weights): %f '... '\n(this value should be about 0.383770)\n'], J); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================ Part 5: Sigmoid Gradient ================ % Before you start implementing the neural network, you will first % implement the gradient for the sigmoid function. You should complete the % code in the sigmoidGradient.m file. % fprintf('\nEvaluating sigmoid gradient...\n') g = sigmoidGradient([-1 -0.5 0 0.5 1]); fprintf('Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n '); fprintf('%f ', g); fprintf('\n\n'); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================ Part 6: Initializing Pameters ================ % In this part of the exercise, you will be starting to implment a two % layer neural network that classifies digits. You will start by % implementing a function to initialize the weights of the neural network % (randInitializeWeights.m) fprintf('\nInitializing Neural Network Parameters ...\n') initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size); initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels); % Unroll parameters initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; %% =============== Part 7: Implement Backpropagation =============== % Once your cost matches up with ours, you should proceed to implement the % backpropagation algorithm for the neural network. You should add to the % code you've written in nnCostFunction.m to return the partial % derivatives of the parameters. % fprintf('\nChecking Backpropagation... \n'); % Check gradients by running checkNNGradients checkNNGradients; fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% =============== Part 8: Implement Regularization =============== % Once your backpropagation implementation is correct, you should now % continue to implement the regularization with the cost and gradient. % fprintf('\nChecking Backpropagation (w/ Regularization) ... \n') % Check gradients by running checkNNGradients lambda = 3; checkNNGradients(lambda); % Also output the costFunction debugging values debug_J = nnCostFunction(nn_params, input_layer_size, ... hidden_layer_size, num_labels, X, y, lambda); fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = %f): %f ' ... '\n(for lambda = 3, this value should be about 0.576051)\n\n'], lambda, debug_J); fprintf('Program paused. Press enter to continue.\n'); pause; %% =================== Part 8: Training NN =================== % You have now implemented all the code necessary to train a neural % network. To train your neural network, we will now use "fmincg", which % is a function which works similarly to "fminunc". Recall that these % advanced optimizers are able to train our cost functions efficiently as % long as we provide them with the gradient computations. % fprintf('\nTraining Neural Network... \n') % After you have completed the assignment, change the MaxIter to a larger % value to see how more training helps. options = optimset('MaxIter', 50); % You should also try different values of lambda lambda = 1; % Create "short hand" for the cost function to be minimized costFunction = @(p) nnCostFunction(p, ... input_layer_size, ... hidden_layer_size, ... num_labels, X, y, lambda); % Now, costFunction is a function that takes in only one argument (the % neural network parameters) [nn_params, cost] = fmincg(costFunction, initial_nn_params, options); % Obtain Theta1 and Theta2 back from nn_params Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================= Part 9: Visualize Weights ================= % You can now "visualize" what the neural network is learning by % displaying the hidden units to see what features they are capturing in % the data. fprintf('\nVisualizing Neural Network... \n') displayData(Theta1(:, 2:end)); fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% ================= Part 10: Implement Predict ================= % After training the neural network, we would like to use it to predict % the labels. You will now implement the "predict" function to use the % neural network to predict the labels of the training set. This lets % you compute the training set accuracy. pred = predict(Theta1, Theta2, X); fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
1,通过可视化数据,可以看到如下图所示:
2,前向传播代价函数(Feedforward and cost function)
$J(\Theta)=-\frac{1}{m}\sum_{i=1}^{m}\sum_{k=1}^{K}[y^{(i)}_k(log(h_\Theta(x^{(i)}))_k)+(1-y^{(i)}_k)log(1-(h_{\Theta}(x^{(i)}))_k)]$
$+\frac{\lambda }{2m}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_l+1}(\Theta_{ji}^{l})^{2}$
注意:$(h_\Theta(x^{(i)}))_k=a^{(3)}_k$,第k个输出单元。
该代价函数正则化时忽略偏差项,最里层的循环$𝑗$循环所有的行由$𝑠^{𝑙 +1}$ 层的激活单元数决定),循环$𝑖$则循环所有的列,由该层($𝑠^{𝑙}$层)的激活单元数所决定。
神经网络跟之前我们学过的逻辑回归思想差不多。在这里我们的神经网络有三层(输入层,隐藏层,输出层)。
1,我们先随机初始化参数$\Theta1$与$\Theta2$(已添加偏差项)。

function W = randInitializeWeights(L_in, L_out) %RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in %incoming connections and L_out outgoing connections % W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights % of a layer with L_in incoming connections and L_out outgoing % connections. % % Note that W should be set to a matrix of size(L_out, 1 + L_in) as % the first column of W handles the "bias" terms % % You need to return the following variables correctly W = zeros(L_out, 1 + L_in); % ====================== YOUR CODE HERE ====================== % Instructions: Initialize W randomly so that we break the symmetry while % training the neural network. % % Note: The first column of W corresponds to the parameters for the bias unit % ##epsilon_init=sqrt(6)/(sqrt(L_in+L_out)); epsilon_init=0.12; W=rand(L_out,1+L_in)*2*epsilon_init-epsilon_init; % ========================================================================= end
2,我们有了参数$\Theta$,我们就可以使用前向传播去计算$h_{\Theta}(x)$,这跟之前的逻辑回归差不多
3,紧接着我们要求代价函数的偏导数$\frac{\partial }{\partial \Theta^{(l)}_{ij}}J(\Theta)$(𝑖 代表下一层中误差单元的下标,𝑗 代表目前计算层中的激活单元的下标),
在这里我们采用一种叫做反向传播(Backpropagation)来计算偏导数,完成梯度下降。
反向传播:对于每一个样例,都使用以下四步
3-1:先使用前向传播计算$a^{l}$,$l=1,2,...,L$
3-2: 从最后一层的误差$\delta$开始计算,$\delta^{(L)}=a^{(L)}-y$,
在这,即:$\delta^{(3)}=a^{(3)}-y$
3-3: 紧接着计算隐藏层$\delta^{(l)}$,$\delta^{(l)}=(\Theta^{(l)})^{T}\delta^{(l+1)}.*{g}'(z^{(l)})$,
${g}'(z^{(l)})=g(z^{(l)}).*(1-g(z^{(l)}))$
Sigmoid gradient求导代码:

function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigmoid function %evaluated at z % g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function % evaluated at z. This should work regardless if z is a matrix or a % vector. In particular, if z is a vector or matrix, you should return % the gradient for each element. g = zeros(size(z)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the gradient of the sigmoid function evaluated at % each value of z (z can be a matrix, vector or scalar). g=sigmoid(z).*(1-sigmoid(z)); % ============================================================= end
在这,即:$\delta^{(2)}=(\Theta^{(2)})^{T}\delta^{(3)}.*{g}'(z^{(2)})$ (除开偏差项)
3-4:使用以下公式来实现累积梯度,这跟前面的逻辑回归差不多,也是累加所有样例的梯度后更新。
$\Delta ^{(l)}:=\Delta ^{(l)}+\delta^{(l+1)}(a^{(l)})^{T}$
最后:$\frac{\partial }{\partial \Theta^{(l)}_{ij}}J(\Theta)=D^{(l)}_{ij}=\frac{1}{m}\Delta^{(l)}_{ij}$ ,$j=0$
$\frac{\partial }{\partial \Theta^{(l)}_{ij}}J(\Theta)=D^{(l)}_{ij}=\frac{1}{m}\Delta^{(l)}_{ij}+ \frac{\lambda}{m}\Theta^{(l)}_{ij}$,$j \geq 1$
代价函数以及反向传播代码:

function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network %还原Theta1与Theta2 Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); %梯度下降的偏导数1 Theta2_grad = zeros(size(Theta2)); %梯度下降的偏导数2 % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % % 根据已给的参数Θ(1)和Θ(2),使用前向传播算法算出hθ(x),维度为10 a1=[ones(m,1) X]; a2=sigmoid(a1*Theta1'); a2=[ones(m,1) a2]; h=sigmoid(a2*Theta2'); %5000x10 yk=zeros(m,num_labels); %定义5000x10的训练集输出向量 %根据数据集y给yk向量赋值 for i=1:m yk(i,y(i))=1; endfor %前向传播代价函数,忽略正则化,该代价函数就为矩阵h与矩阵yk点乘后计算总和 J=(1/m)*sum(sum((-yk.*log(h)-(1-yk).*log(1-h)))); item1=Theta1; item1(:,1)=0; item2=Theta2; item2(:,1)=0; %加上正则化 J=J+lambda/2/m*(sum(sum(power(item1,2)))+sum(sum(power(item2,2)))); %反向传播 for t=1:m %对于每一个样例,都计算一次该样例每个参数的偏导数 a1=X(t,:); a1=[1 a1]'; %1x401 z2=Theta1*a1; %25x1 a2=[1;sigmoid(z2)]; %26x1 z3=Theta2*a2; a3=sigmoid(z3); %10x1 y=yk(t,:); %1x10 delta3=a3-y'; %10x1 delta2=Theta2(:,2:end)'*delta3.*sigmoidGradient(z2); %25x1 Theta1_grad=Theta1_grad+delta2*a1'; %25x401 %累加梯度 Theta2_grad=Theta2_grad+delta3*a2'; %10x26 end %梯度总和除以m Theta1_grad=Theta1_grad./m; Theta2_grad=Theta2_grad./m; %梯度正则化 Theta1(:,1)=0; Theta2(:,1)=0; Theta1_grad=Theta1_grad+(lambda/m).*Theta1; Theta2_grad=Theta2_grad+(lambda/m).*Theta2; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients %展开合并为一个大的列向量 grad = [Theta1_grad(:) ; Theta2_grad(:)]; end
4,在我们写好代价函数以及梯度下降的模型时,我们要先进行梯度的数值检验(Numerical Gradient Checking),也就是我们先在一个小样本中测验,如果通过了测试,我们就使用大规模的数据去跑神经网络,这样能更好的求最优解。
当𝜃是一个向量时,我们则需要对偏导数进行检验。因为代价函数的偏导数检验只针对 一个参数的改变进行检验,下面是一个只针对𝜃1进行检验的示例:
$\frac{\partial }{\partial \Theta_{1}}=\frac{J((\theta_1+\epsilon),\theta_2,\theta_3,...,\theta_n)-J((\theta_1-\epsilon),\theta_2,\theta_3,...,\theta_n)}{2\epsilon }$
最后我们还需要对通过反向传播方法计算出的偏导数进行检验,检验时,我们要将该矩阵展开 成为向量,同时我们也将 𝜃 矩阵展开为向量
5,最后我们调用预测函数,求的神经网络的预测准确率为95%左右。
总结: 神经网络是非常强大的模型,可以形成高度复杂的决策边界。
训练神经网络:
1. 参数的随机初始化
2. 利用正向传播方法计算所有的 $h_{\theta}(x)$
3. 编写计算代价函数 J 的代码
4. 利用反向传播方法计算所有偏导数
5. 利用数值检验方法检验这些偏导数
6. 使用优化算法(fmincg)来最小化代价函数
我的便签:做个有情怀的程序员。