给女朋友买了只口红,结果她跟我说分手?掌握了机器学习再买买买吧!
过完年,压岁钱到位,迟来的年终奖到账,钱包鼓起来但新的节日也不断跟上,情人节、元宵节、妇女节…… 说到底,还不是要买买买? 淘宝上的店铺又多又杂乱,一旦买错了, 面临的就是“女 ” 朋友的“果真直男审美 ” 的diss,或者人财两空的局面 接下去,来看看用机器学习技术如何甄别优质店铺,让你买到就是赚到! 分三步走: 第一步:找到阿里给出的店铺评价历史信息,分为训练集数据和测试集数据; 第二步:利用训练集数据构建机器学习模型; 第三步:使用测试集数据进行准确率判断并优化。 如此便可以建立一个相对科学的靠谱店铺预测模型。 首先,从阿里云天池开一份包含2000家店铺的评分,等级,评论等信息和数年交易记录的数据: 通过这份数据, 我们可以构建一套模型,根据店铺的访问、购买信息等数据,来评测该店铺是否为优质店铺。 一部分数据将用来作为训练集,另一部分数据会用来测试已经训练好模型的精确度。但训练的时候并不是精确度越高越好,过拟合和欠拟合都不是好事情。 欠拟合指模型没有很好地捕捉到数据特征,不能够很好地拟合数据: 过拟合通俗一点地说就是模型把数据学习的太彻底,以至于把噪声数据的特征也学习到了,这样就会导致在后期测试的时候不能够很好地识别数据,即不能正确的分类,模型泛化能力太差: 随后,完成了清理整合等预处理工作,得到了一份适合建模使用的样本数据: *完整代码可以在文末获取。考虑这份数据比较粗糙