rdd

Can not access Pipelined Rdd in pyspark [duplicate]

一笑奈何 提交于 2019-12-08 06:45:03
问题 This question already has answers here : pyspark: 'PipelinedRDD' object is not iterable (2 answers) Closed last year . I am trying to implement K-means from scratch using pyspark. I am performing various operations on rdd's but when i try to display the result of the final processed rdd, some error like "Pipelined RDD's cant be iterated" or something like that and things like .collect() do not work again because of the piplined rdd issue. from __future__ import print_function import sys

SPARK-5063 RDD transformations and actions can only be invoked by the driver

旧巷老猫 提交于 2019-12-08 04:36:19
问题 I have a RDD[Row] which I am trying to see: val pairMap = itemMapping.map(x=> { val countryInfo = MappingUtils.getCountryInfo(x); (countryInfo.getId(), countryInfo) }) pairMap: org.apache.spark.rdd.RDD[(String, com.model.item.CountryInfo)] = MapPartitionsRDD[8] val itemList = df.filter(not($"newItemType" === "Unknown Type")).map(row => { val customerId = row.getAs[String](0); val itemId = row.getAs[String](1); val itemType = row.getAs[String](4); val priceType = if (StringUtils.isNotBlank

Spark: Group RDD Sql Query

谁说我不能喝 提交于 2019-12-08 04:28:33
问题 I have 3 RDDs that I need to join. val event1001RDD: schemaRDD = [eventtype,id,location,date1] [1001,4929102,LOC01,2015-01-20 10:44:39] [1001,4929103,LOC02,2015-01-20 10:44:39] [1001,4929104,LOC03,2015-01-20 10:44:39] val event2009RDD: schemaRDD = [eventtype,id,celltype,date1] (not grouped by id since I need 4 dates from this depending on celltype) [2009,4929101,R01,2015-01-20 20:44:39] [2009,4929102,R02,2015-01-20 14:00:00] (RPM) [2009,4929102,P01,2015-01-20 12:00:00] (PPM) [2009,4929102,R03

How to convert a JavaPairRDD to Dataset?

半城伤御伤魂 提交于 2019-12-08 04:13:40
问题 SparkSession.createDataset() only allows List, RDD, or Seq - but it doesn't support JavaPairRDD . So if I have a JavaPairRDD<String, User> that I want to create a Dataset from, would a viable workround for the SparkSession.createDataset() limitation to create a wrapper UserMap class that contains two fields: String and User . Then do spark.createDataset(userMap, Encoders.bean(UserMap.class)); ? 回答1: If you can convert the JavaPairRDD to List<Tuple2<K, V>> then you can use createDataset method

Dataset-API analog of JavaSparkContext.wholeTextFiles

孤街浪徒 提交于 2019-12-08 03:58:06
问题 We can call JavaSparkContext.wholeTextFiles and get JavaPairRDD<String, String> , where first String is file name and second String is whole file contents. Is there similar method in Dataset API, or all I can do is to load files into JavaPairRDD and then convert to Dataset (which is working, but I'm looking for non-RDD solution). 回答1: If you want to use Dataset API then you can use spark.read.text("path/to/files/") . Please check here for API details. Please note that using text() method

Find average by department in spark groupBy in Java 1.8

拟墨画扇 提交于 2019-12-07 21:18:36
问题 I have a below data set where first column is department and second is for salary. I want to calculate the avg of salary by department. IT 2000000 HR 2000000 IT 1950000 HR 2200000 Admin 1900000 IT 1900000 IT 2200000 I performed below operation JavaPairRDD<String, Iterable<Long>> rddY = employees.groupByKey(); System.out.println("<=========================RDDY collect==================>" + rddY.collect()); and got below output: <=========================RDDY collect==================>[(IT,

RDD JAVA API 用法指南

喜你入骨 提交于 2019-12-07 20:51:23
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合。在spark中,对所有数据的操作不外乎是创建RDD、转化已有的RDD以及调用RDD操作进行求值。在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化。 Spark中的RDD就是一个不可变的分布式对象集合。每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上。RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象。 用户可以使用两种方法创建RDD: 读取一个外部数据集,或在驱动器程序中分发驱动器程序中的对象集合,比如list或者set。 RDD的转化操作都是惰性求值的,这意味着我们对RDD调用转化操作,操作不会立即执行。相反,Spark会在内部记录下所要求执行的操作的相关信息。我们不应该把RDD看做存放着特定数据的数据集,而最好把每个RDD当做我们通过转化操作构建出来的、记录如何计算数据的指令列表。数据读取到RDD中的操作也是惰性的,数据只会在必要时读取。转化操作和读取操作都有可能多次执行。 2.创建RDD数据集 (1)读取一个外部数据集 JavaRDD<String> lines=sc.textFile( inputFile ) ; (2)分发对象集合,这里以list为例 List<String> list= new ArrayList

Spark学习笔记 --- Spark中Map和FlatMap转换的区别

和自甴很熟 提交于 2019-12-07 20:50:56
map: 对RDD每个元素转换 flatMap: 对RDD每个元素转换, 然后再 扁平化 (即将所有对象合并为一个对象) Example: data 有两行数据: a,b,c 1,2,3 scala>data.map(line1 => line1.split(",")).collect() res11: Array[Array[String]] = Array(Array(a, b, c),Array(1, 2, 3)) scala>data.flatMap(line1 => line1.split(",")).collect() res13: Array[String] = Array(a, b, c, 1, 2, 3) 来源: CSDN 作者: 杨鑫newlfe 链接: https://blog.csdn.net/u012965373/article/details/60879642

Spark API 详解/大白话解释 之 map、mapPartitions、mapValues、mapWith、flatMap、flatMapWith、flatMapValues

喜你入骨 提交于 2019-12-07 20:48:50
map(function) map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。 举例: val a = sc.parallelize( 1 to 9 , 3 ) val b = a .map(x => x* 2 )//x => x*2是一个函数,x是传入参数即RDD的每个元素,x*2是返回值 a .collect //结果Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9) b.collect //结果Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18) 当然map也可以把Key变成Key-Value对 val a = sc .parallelize (List( "dog" , "tiger" , "lion" , "cat" , "panther" , " eagle" ), 2 ) val b = a .map ( x => ( x , 1 )) b .collect .foreach (println(_)) /* (dog,1) (tiger,1) (lion,1) (cat,1) (panther,1) ( eagle,1) */ mapPartitions(function) map(

Spark-RDD 分区

喜夏-厌秋 提交于 2019-12-07 20:48:31
RDD分区 在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。所以对RDD进行分区的目的就是减少网络传输的代价以提高系统的性能。 RDD的特性 在讲RDD分区之前,先说一下RDD的特性。 RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中,诸如map、flatMap、filter等转换操作实现了monad模式,很好地契合了Scala的集合操作。除此之外,RDD还提供了诸如join、groupBy、reduceByKey等更为方便的操作(注意,reduceByKey是action,而非transformation),以支持常见的数据运算。 通常来讲,针对数据处理有几种常见模型,包括:Iterative Algorithms,Relational Queries,MapReduce,Stream Processing。例如Hadoop MapReduce采用了MapReduces模型,Storm则采用了Stream Processing模型。RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。 RDD作为数据结构,本质上是一个只读的分区记录集合