quicksort

Lazy Quicksort in Scala

一笑奈何 提交于 2019-12-06 02:39:57
问题 Is it possible to do this sort of thing in Scala? 回答1: def quicksort[A](xs: Stream[A])(implicit o: Ordering[A]): Stream[A] = { import o._ if (xs.isEmpty) xs else { val (smaller, bigger) = xs.tail.partition(_ < xs.head) quicksort(smaller) #::: xs.head #:: quicksort(bigger) } } It can be done with views as well, though it's bound to be much slower: def quicksort[A](xs: List[A])(implicit o: Ordering[A]) = { import o._ def qs(xs: SeqView[A, List[A]]): SeqView[A, Seq[_]] = if (xs.isEmpty) xs else

Is Quick Sort a Divide & Conquer approach? [closed]

我们两清 提交于 2019-12-06 00:26:26
Closed . This question is opinion-based . It is not currently accepting answers. Want to improve this question? Update the question so it can be answered with facts and citations by editing this post . Closed 2 years ago . I consider Merge sort as divide and conquer because, Divide - Array is literally divided into sub arrays without any processing (compare/swap), and the problem sized is halved/Quartered/.... Conquer - merge() those sub arrays by processing (compare/swap) Code gives an impression that it is Divide&Conquer, if(hi <= lo) return; int mid = lo + (hi-lo)/2; //No (compare/swap) on

Wait for all threads in an Executor to finish?

。_饼干妹妹 提交于 2019-12-05 11:29:04
I'm implementing a parellel quicksort as programming practice, and after I finished, I read the Java tutorial page on Executors, which sound like they could make my code even faster. Unfortunately, I was relying on join()'s to make sure that the program doesn't continue until everything is sorted. Right now I'm using: public static void quicksort(double[] a, int left, int right) { if (right <= left) return; int i = partition(a, left, right); // threads is an AtomicInteger I'm using to make sure I don't // spawn a billion threads. if(threads.get() < 5){ // ThreadSort's run method just calls

insertion sort vs bubble sort vs quicksort algorithm

会有一股神秘感。 提交于 2019-12-05 07:09:06
问题 I am working on a research in the class I tested bubble sort and insertion sort and quick sort , i did the test on random numbers. The results shows that insertion sort is more quicker than bubble sort and quick sort is the most slower one. So I have the below ranking in terms of time insertion sort (the fastest) bubble sort (second score) quick sort (the slowest) Taking into account that insertion and bubble sort have a complexity of O(n2) while quick sort O(n log n) and O (n log n) should

Haskell's quicksort - what is it really? [duplicate]

耗尽温柔 提交于 2019-12-05 06:05:16
This question already has an answer here: Pseudo-quicksort time complexity 6 answers As they say, "true quicksort sorts in-place" . So the standard short Haskell code for quicksort , quicksort :: Ord a => [a] -> [a] quicksort [] = [] quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater) where lesser = filter (< p) xs greater = filter (>= p) xs what algorithm/computational process is it describing, after all? It surely isn't what Tony Hoare devised , lacking its most defining feature, the in-place partitioning algorithm. (the answer might be well known, but not yet here on SO).

How to reify Prolog's backtracking state to perform the same task as “lazy seq” from Clojure?

帅比萌擦擦* 提交于 2019-12-05 04:38:44
Here is a quicksort algorithm for numbers written in Clojure. It is basically the quicksort algorithm found in "The Joy of Clojure" , 2nd edition, page 133. I modified it slightly for (hopefully) better readability, because the original felt a bit too compact: (defn qsort-inner [work] (lazy-seq (loop [loopwork work] (let [[ part & partz ] loopwork ] (if-let [[pivot & valuez] (seq part)] (let [ smaller? #(< % pivot) smz (filter smaller? valuez) lgz (remove smaller? valuez) nxxt (list* smz pivot lgz partz) ] (recur nxxt)) (if-let [[oldpivot & rightpartz] partz] (cons oldpivot (qsort-inner

Quicksort - which sub-part should be sorted first?

孤者浪人 提交于 2019-12-05 04:04:43
I am reading some text which claims this regarding the ordering of the two recursive Quicksort calls: ... it is important to call the smaller subproblem first, this in conjunction with tail recursion ensures that the stack depth is log n. I am not at all sure what that means, why should I call Quicksort on the smaller subarray first? Look at quicksort as an implicit binary tree. The pivot is the root, and the left and right subtrees are the partitions you create. Now consider doing a depth first search of this tree. The recursive calls actually correspond to doing a depth first search on the

What is a Deterministic Quicksort?

回眸只為那壹抹淺笑 提交于 2019-12-05 02:04:16
I have been reading about Quicksort and found that sometimes it' s referred to as "Deterministic Quicksort". Is this an alternate version of the normal Quicksort ? What is the difference between a normal Quicksort and a Deterministic Quicksort ? The ordinary ("deterministic") Quicksort can have very poor behaviour on particular datasets (as an example, an implementation that picks the first unsorted element has O(n^2) time complexity on already-sorted data). Randomized Quicksort (which selects a random pivot, rather than choosing deterministically) is sometimes used to give better expected

Using quicksort on a string array

人盡茶涼 提交于 2019-12-05 00:20:54
问题 I'm a programming student and rather than post the whole assignment I'll just ask for help solving what I've tried for hours now to understand. I'm tasked with sorting an array of strings using the quicksort method. Everything else I've been tasked with as part of this problem is fine but when I tested the sorting method by printing out the String Array, it's completely jumbled up without any seeming rhyme or reason. Please help me pinpoint the error in my code, or the several glaring errors

Random pivot quicksort in Java [duplicate]

家住魔仙堡 提交于 2019-12-04 22:43:45
问题 This question already has an answer here : Closed 7 years ago . Possible Duplicate: Quick Sort with random pivot in Java The below written code of the Quicksort uses the first element of the array as the pivot and then sorts the array. Now I want to randomly pick up the pivot instead of first one and then sort the array and I am stuck please tell me what changes I can make in the below code to get the perfect results. import java.util.*; import javax.swing.JOptionPane; public class Quicksort