pca算法实现
pca基础知识不了解的可以先看下一这篇博客: https://www.cnblogs.com/lliuye/p/9156763.html 具体算法实现如下: 1 import numpy as np 2 import matplotlib.pyplot as plt 3 # 载入数据 4 data = np.genfromtxt("data.csv", delimiter=",") 5 x_data = data[:,0] 6 y_data = data[:,1] 7 plt.scatter(x_data,y_data) 8 plt.show() 9 print(x_data.shape) 10 # 数据中心化 11 def zeroMean(dataMat): 12 # 按列求平均,即各个特征的平均 13 meanVal = np.mean(dataMat, axis=0) 14 newData = dataMat - meanVal 15 return newData, meanVal 16 newData,meanVal=zeroMean(data) 17 print(newData.shape) 18 # np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。 19 covMat = np.cov(newData