How can I find the minimum cut on a graph using a maximum flow algorithm?
I need to find the minimum cut on a graph. I've been reading about flow networks, but all I can find are maximum flow algorithms such as Ford-Fulkerson, push-relabel, etc. Given the max flow-min cut theorem, is it possible to use one of those algorithms to find the minimum cut on a graph using a maximum flow algorithm? How? The best information I have found so far is that if I find "saturated" edges i.e. edges where flow equals capacity, those edges correspond to the minimum cut. Is that true? It doesn't sound 100% right to me. It is true that all edges on the minimum cut will be saturated,